
Hunting for Bugs in "Ethereum 2.0"

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

Hunting for Bugs in Ethereum

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

Hunting for Bugs in Ethereum clients

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

Hunting for Bugs in Ethereum "clients"

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

Context

Joint work with Denis Kolegov (Protocol Labs) and Evangelia Stathopoulou (UCL)

Research grant from the Ethereum Foundation

35 security issues reported, paper at https://arxiv.org/abs/2109.11677

5

https://arxiv.org/abs/2109.11677
https://arxiv.org/abs/2109.11677

Ethereum

The main public blockchain platform for

Decentralised applications (“dApps”)

User-defined tokens: ERC-20s, NFTs, tokenised securities, etc.

DeFi applications (Uniswap, Compound, etc.)

6

Ethereum

The main public blockchain platform for

Decentralised applications (“dApps”)

User-defined tokens: ERC-20s, NFTs, tokenised securities, etc.

DeFi applications (Uniswap, Compound, etc.)

7

Reddit user, 2021

Ethereum’s scaling problem

To process new transactions, Ethereum nodes need to

Run computation (“recompute" smart contracts)

Store data (function arguments, state variables)

8

https://cs161.org/assets/lectures/lec12.pdf
https://cs161.org/assets/lectures/lec12.pdf

Ethereum’s scaling problem

To process new transactions, Ethereum nodes need to

Run computation (“recompute" smart contracts)

Store data (function arguments, state variables)

Bottleneck of ~15 transactions/second, leading to

Increased transaction cost (gas fees)

Network congestion

Unhappy users

9

https://cs161.org/assets/lectures/lec12.pdf

https://cs161.org/assets/lectures/lec12.pdf
https://cs161.org/assets/lectures/lec12.pdf

Scaling solutions

2 main classes of solutions to address the scalability problem:

L1: Change how Ethereum works (change the “operating system”), by changing the
consensus protocol, the way data is stored, how transactions are validated, etc.

L2: Create applications that "define their own rules" to allow for faster transactions

10

Layer 2: Applications built atop Ethereum, using smart contracts

Analogy: browser, hypervisors, virtual machines

Layer 1: The platform, how Ethereum works

Analogy: bare metal OS, e.g., Windows, macOS

Ethereum "2.0"

The layer-1 approach to scaling, via

Proof-of-stake, instead of proof-of-work

Data sharding, via shard chains

A coordinator chain called the Beacon Chain (shipped on Dec 2020)

11

https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming/

https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming/
https://blog.ethereum.org/2022/01/24/the-great-eth2-renaming/

The Beacon Chain

Network of nodes that interact to maintain a state as per a consensus protocol

12

https://ethereum.org/en/upgrades/merge/

https://ethereum.org/en/upgrades/get-involved/#clients
https://ethereum.org/en/upgrades/get-involved/#clients
https://ethereum.org/en/upgrades/merge/
https://ethereum.org/en/upgrades/merge/

The Beacon Chain

Network of nodes that interact to maintain a state as per a consensus protocol

13

https://ethereum.org/fr/staking/

https://ethereum.org/en/upgrades/get-involved/#clients
https://ethereum.org/en/upgrades/get-involved/#clients
https://ethereum.org/fr/staking/
https://ethereum.org/fr/staking/

The Beacon Chain

Network of nodes that interact to maintain a state as per a consensus protocol

Nodes’ server software are "beacon clients", or “consensus clients”

14

https://ethereum.org/en/upgrades/get-involved/#clients

https://ethereum.org/en/upgrades/get-involved/#clients
https://ethereum.org/en/upgrades/get-involved/#clients

The Beacon clients

15

The Beacon clients

16

https://migalabs.es/crawler/dashboard

Prysm

Lighthouse

Nimbus

Teku

https://migalabs.es/crawler/dashboard
https://migalabs.es/crawler/dashboard

The Beacon clients

17

https://migalabs.es/crawler/dashboard

https://migalabs.es/crawler/dashboard
https://migalabs.es/crawler/dashboard

The Beacon clients

Run 2 services (+ an optional slasher service)

A beacon node, a “passive" service that maintains a view of the chain

A validator, the “active" service, proposing and signing state modifications,
requires to stake 32 ETH to run a validator

Newest components compared to "Eth1":

Cryptographic signatures (BLS)

Slashing, the punishing mechanism

The Beacon API

18

Methodology

Compared specifications with the implementations (can find bugs in either)

Compared implementations of a same functionality across 4 clients

A bug in one client may occur in others as well

“Why do they do this differently?” helps discover bugs

Review reuse of same core libs with different bindings

Mostly code review + local code execution

19

BLS signatures

Can aggregate signature/pubkeys, and allow efficient batch verification

At the same time much simpler and more complex than ECDSA or Schnorr

Signature = SecretKey × Hash(Message)

What can go wrong?

20

BLS signatures

Can aggregate signature/pubkeys, and allow efficient batch verification

At the same time much simpler and more complex than ECDSA or Schnorr

Signature = SecretKey × Hash(Message)

What can go wrong?

21
https://eprint.iacr.org/2021/323.pdf

https://eprint.iacr.org/2021/323.pdf
https://eprint.iacr.org/2021/323.pdf

BLS signatures

Specified in an IETF draft, as multiple procedures for signing, verifying, etc.

Example: CoreVerify

22

BLS signatures

Specified in an IETF draft, as multiple procedures for signing, verifying, etc.

Example: CoreVerify

23

BLS signatures

Specified in an IETF draft, as multiple procedures for signing, verifying, etc.

Example: CoreVerify

24

Reported 19 issues related to BLS signatures, across all projects

Only low/mid severity, no “get rich for free” exploitation scenarios :)

BLS signatures bugs

25

Peer-to-peer (P2P) communication

26

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md

P2P

Ethereum nodes’ secure transport is based on the libp2p-noise protocol

Libp2p-noise is part of the libp2p suite, "the de facto web3 networking layer”

27

https://libp2p.io/implementations/

https://libp2p.io/implementations/
https://libp2p.io/implementations/

P2P

Ethereum nodes’ secure transport is based on the libp2p-noise protocol

Libp2p-noise is part of the libp2p suite, "the de facto web3 networking layer”

28

libp2p

libp2p-noise

Noise

Noise XX

Suite of various network protocols

Secure transport protocol in Eth

Crypto protocols framework

Specific version of Noise

https://libp2p.io/implementations/
https://libp2p.io/implementations/

The Noise XX key agreement

29

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

PK-E

PK-E, Enc(PK-S)

Payloads encryption key combes all DH’s, see https://noiseexplorer.com/patterns/XX/

New ephemeral key pair
(SK-E, PK-E)

New ephemeral key pair
Pick (SK-E, PK-E)

DH1=DH(PK-E, SK-E)
DH2=DH(PK-E, SK-S)

Decrypt PK-S
DH3=DH(PK-S, SK-E)

Static key pair (SK-S, PK-S) Static key pair (SK-S, PK-S)

Enc(PK-S)

DH1=DH(PK-E, SK-E)
Decrypt PK-S
DH2=DH(SK-E, PK-S)

DH3=DH(SK-S, PK-E)

JESSICA
MORTY

https://noiseexplorer.com/patterns/XX/
https://noiseexplorer.com/patterns/XX/

The Noise XX key agreement

30

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

What can go wrong?

The Noise XX key agreement

31

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

What can go wrong? Replay!

How to fix it?

The Noise XX key agreement

32

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

What can go wrong? Replay!

How to fix it? Sign key||X, where X is unpredictable (random, session hash, etc.)

The Noise XX key agreement

33

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

What can go wrong? Replay!

How to fix it? Sign key||X, where X is unpredictable (random, session hash, etc.)

How could this be abused? PK-E

Pick (SK-E, PK-E)
DH1=DH(PK-E, SK-E)
DH2=DH(PK-E, SK-S)

The Noise XX key agreement

34

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

What can go wrong? Replay!

How to fix it? Sign key||X, where X is unpredictable (random, session hash, etc.)

How could this be abused? DoS! (if UDP)

How to fix it?

PK-E

Pick (SK-E, PK-E)
DH1=DH(PK-E, SK-E)
DH2=DH(PK-E, SK-S)

The Noise XX key agreement

35

In Ethereum, each party also has an identity key, used to sign new static keys (PK-S)

What can go wrong? Replay!

How to fix it? Sign key||X, where X is unpredictable (random, session hash, etc.)

How could this be abused? DoS! (if UDP)

How to fix it? Cookies!

PK-E

Pick (SK-E, PK-E)
DH1=DH(PK-E, SK-E)
DH2=DH(PK-E, SK-S)

https://www.wireguard.com/protocol/

https://www.wireguard.com/protocol/
https://www.wireguard.com/protocol/

Libp2p-noise int overflow

In https://github.com/ChainSafe/js-libp2p-noise (used in the Lodestar client)

Traced back to Noise Explorer’s Go code generation

Famous nonce reuse problem of stream ciphers: plaintext exposed

36
https://noiseprotocol.org/noise.html

https://github.com/ChainSafe/js-libp2p-noise
https://github.com/ChainSafe/js-libp2p-noise
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html

Libp2p-noise int overflow

In https://github.com/ChainSafe/js-libp2p-noise (used in the Lodestar client)

Traced back to Noise Explorer’s Go code generation

Famous nonce reuse problem of stream ciphers: plaintext exposed

37

https://github.com/symbolicsoft/noiseexplorer

https://github.com/ChainSafe/js-libp2p-noise
https://github.com/ChainSafe/js-libp2p-noise
https://github.com/symbolicsoft/noiseexplorer
https://github.com/symbolicsoft/noiseexplorer

Libp2p-noise MitM

A few days ago (not our bug)

38

Libp2p-noise MitM

A few days ago (not our bug)

39

Beacon API

Found some of the “usual" security issues across clients, such as

Incorrect handling of headers (e.g. Content-Type, Accept)

Lack of JSON schema validation

Public exposure of the API (without authentication)

Authentication tokens written in logs

POST and PATCH requests possible without API token

DoS vectors

40

Most modern software is other people’s code

Risk of sabotage (backdoors, bugdoors)

Version management nightmare

Copyright and licensing issues

Tooling is being developed for

Inventorying dependencies (dependency graph)

Finding outdate or vulnerable versions

Supply-chain risks

41

https://xkcd.com/2347/

https://xkcd.com/2347/
https://xkcd.com/2347/

Supply-chain risks

42

Supply-chain risks

43

Our goal: find risk indicators that are

Easy to calculate

Meaningful and fair

Language-agnostic

Metrics about

Dependencies (quantity, quality)

SDLC & maintainance

Supply-chain risks

44

Conclusions

No high/critical sev bug found

Already good level of testing, fuzzing, security audits

But complex systems + lot of code = hard to catch bugs

High incentives for attackers to invest in finding and stockpiling bugs

45

Conclusions

“What’s the best client? Which one should I use?”

46

Conclusions

“What’s the best client? Which one should I use?” It depends™

Lighthouse is the most security-focused, Prysm is the most popular

Nimbus is lighter, Teku is enterprise-oriented

A reasonable level of client diversity seems preferable, security-wise

47

Conclusions

When will “Ethereum 2.0” be available?

48

https://blog.ethereum.org/2022/03/14/kiln-merge-testnet/

https://blog.ethereum.org/2022/03/14/kiln-merge-testnet
https://blog.ethereum.org/2022/03/14/kiln-merge-testnet

Conclusions

Quand est-ce que le «Ethereum 2.0» sera disponible ?

49

https://blog.ethereum.org/2022/03/14/kiln-merge-testnet/

https://blog.ethereum.org/2022/03/14/kiln-merge-testnet
https://blog.ethereum.org/2022/03/14/kiln-merge-testnet

Thank you!

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

