
Zero-knowledge proofs security, in practice

JP Aumasson

@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

/me

Co-founder & CSO of a Swiss fintech (Taurus)

● High-assurance crypto custody tech https://taurushq.com

● Used by banks to protect and manage their BTC/ETH/etc.

● Running a regulated exchange https://t-dx.com

Cryptography and vulnerability research since ~2006

● Designed crypto in the Linux kernel, Bitcoin, etc. 
(SipHash, BLAKE2, BLAKE3)

● Wrote some books about cryptography

https://aumasson.jp. https://twitter.com/veorq
2

https://taurushq.com
https://t-dx.com
https://aumasson.jp
https://twitter.com/veorq
https://taurushq.com
https://t-dx.com
https://aumasson.jp
https://twitter.com/veorq

Zero-knowledge proof?

!= “zero-knowledge architecture” (a.k.a. “zero-trust”)

!= “zero-knowledge encryption” (marketing term for client-side encryption)

3

Protocolo de conocimiento cero

!= “zero-knowledge architecture” (a.k.a. “zero-trust”)

!= “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols…

Between a prover and a verifier

Which can be non-interactive

Known since the 1980s, only recently 
used in practice at scale (zkSNARKS)

4

Protocolo de conocimiento cero

!= “zero-knowledge architecture” (a.k.a. “zero-trust”)

!= “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols…

Between a prover and a verifier

Which can be non-interactive

Known since the 1980s, only recently 
used in practice at scale (zkSNARKS)

5

https://www.youtube.com/watch?v=fOGdb1CTu5c

https://www.youtube.com/watch?v=fOGdb1CTu5c
https://www.youtube.com/watch?v=fOGdb1CTu5c

The simplest ZK proof

Schnorr’s proof of knowledge of discrete logarithm (x in y = gx mod p)

6

Pick a random r, send t = gr mod p

Send a random c

Send s = r + cx mod p

Verify that gs = t × yc

 It works because gs = gr + cx = gr × (gx)c = t × yc

Probador Verificador

Zero-knowledge proofs applications

Privacy of payments (à la Zcash and Monero), and of general computation (Aleo)

Scalability – via "ZK rollups”, preventing re-computation (though not always private)

Storage proofs, as in Filecoin’s proofs of spacetime

Mining, as in Aleo’s proofs of succinct work

7

https://eprint.iacr.org/2018/046

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

8

Vibrant ecosystem

aleo.org aztec.network

starkware.co z.cashprotocol.ai

arkworks.rs

Examples of major projects in the ZK space, many other initiatives and research groups

celo.org

anoma.network

This talk

Focus on zkSNARKs, a class of zero-knowledge proof systems

Fully succinct = O(1) proof size and O(circuit size) verification time

Based on my experience looking for bugs in

Groth16, used in Zcash, Filecoin, and many others

Marlin, a universal zkSNARK, used in Aleo

Circuits, and in many other related crypto

Lessons applies to other systems (Plonk, SONIC, etc.), and other complex systems

9

zkSNARKs are not the only proof systems used in practice

STARKs: no trusted setup, proof size not constant, post-quantum (StarkWare)

Bulletproofs: simpler, no trusted setup, but slower verification (Monero)

zkSNARKs and friends

10

STARK = Scalable, Transparent ARgument of Knowledge

zkSNARKs’ best years: 2018-2020

11

https://www.wikiwand.com/en/Zero-knowledge_proof

https://www.wikiwand.com/en/Zero-knowledge_proof
https://www.wikiwand.com/en/Zero-knowledge_proof

Why study zkSNARKs security?

A major risk for decentralised platforms (L2 protocols, private transactions):

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

12

Why study zkSNARKs security?

A major risk for decentralised platforms (L2 protocols, private transactions):

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

As a cryptographer since ~2005, the most interesting crypto I’ve seen:

Intricate constructions with non-trivial components

“Simple but complex" – non-interactive, but many moving parts

“Multidimensional" way to reason about security

“Real-worldness”: not just papers – “code is specs”
13

What's zkSNARKs security? (it depends™)

Soundness: Invalid proofs should always be rejected (solvencia)

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

14

What's zkSNARKs security? (it depends™)

Soundness: Invalid proofs should always be rejected (solvencia)

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information (conocimiento cero)

In practice, succinct proofs of large programs can leak only little data

15

What's zkSNARKs security? (it depends™)

Soundness: Invalid proofs should always be rejected (solvencia)

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information (conocimiento cero)

In practice, succinct proofs of large programs can leak only little data

Completeness: Valid proofs should always be accepted (totalidad)

Often a DoS/usability risk that may be further exploited

All programs/circuits supported should be correctly processed

16

Who can find bugs?

A. Developers of the code (manually or via testing)

B. Developers of other projects’ code

C. External auditors of the code

D. Users of the code, accidentally 😇

E. External “attackers” 😈

Security goal: you want A|B|C to find bugs before D|E

17

Bug hunting challenges

Practical zkSNARKs are recent, thus auditors often have

Limited experience auditing zkSNARKs

Limited knowledge of the theory and of implementations’ tricks

Limited “checklist" of bugs and bug classes

Limited tooling and methodologies

Limited documentation from the projects

How to make useful work nonetheless?

18

Bug hunting challenges

People think that finding vulnerabilities is about finding holes in code.
But at some level it's not really about that. It's about understanding that
the code itself is a hole in the swirling chaos of the world and just letting
a little bit of that chaos in allows you to illuminate the whole thing.

Dave Aitel, unintentionally on ZK proofs bug hunting 
https://seclists.org/dailydave/2022/q2/3

19

https://seclists.org/dailydave/2022/q2/3
https://seclists.org/dailydave/2022/q2/3

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)

More threat analysis, to understand the application’s unique/novel risks

Practical experience: writing PoCs, circuits, proof systems, etc.

Learn previous failures, for example from…

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

20

General workflow, and failure examples

21

Computation

Circuit definition

Arithmetization

Non-interactive proof

Integration

General workflow, and failure examples

22

Computation

Circuit definition

Arithmetization

Non-interactive proof

Integration

The program’s logic is not secure

The circuit is not equivalent to the program

The constraint system fails to enforce a constraint

Insecure choice of primitives/parameters/properties

The application allows replays of previous proofs

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

23

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

Break zero-knowledge, for example by exploiting

Private data treated as public variables

Application-level “metadata attacks”

24

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

Break zero-knowledge, for example by exploiting

Private data treated as public variables

Application-level “metadata attacks”

Break completeness, for example by exploiting

Incorrect constraint synthesis behavior on edge cases (e.g. number of private vars)

Gadget composition failure caused by type mismatch between gadget i/o values
25

How to break zkSNARKs? (2/2)

Break (off-chain) software, via any bug leading to

Leakage of data, including via side channels (timing, oracles, etc.)

Any form in insecure state (code execution, DoS)

Compromise the “supply-chain", via

Trusted setup's code and execution

Build and release process integrity

Software dependencies

Break (on-chain) software (incl. verifier) via smart contract bugs, logic flaws, etc.

26

Need structure/methodology..

27

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation  
from fixed or user-defined circuit

What to look for, and where?

28

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Zero-knowledge greater risks

Completeness and  
Soundness greater risks

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation  
from fixed or user-defined circuit

Divide and conquer..

29

Field arithmetic, elliptic curves group operations

A failure in a subcomponent can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Arithmetization / constraints generation  
from fixed or user-defined circuit

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Hashing, PRF, Algebraic commitment,
Randomness, Merkle trees, …

Fiat-Shamir, Polynomial commitments,
Hash-to-curve, linear algebra, …

Key/nonce management, Testing Interface, Side channels, Replays

Fast operations, multiexp, …

R1CS, AIR, polynomials, …

RNG, …

..

Understand composability conditions..

30

Security 101: Input validation must be defined, implemented, and tested

Prover/verifier
Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment

Randomness, Merkle trees Linear algebra, Multi-exp.
Polynomial commitments, Fiat-Shamir transforms, etc. etc.

Application Key management, Testing Interface, Side channels

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Contracts between components must be defined
to prevent insecure composition

Example: which component is responsible  
for group membership checks?

31

Real-word crypto bugs..

Soundness – Field arithmetic (1/n)

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

32

https://github.com/appliedzkp/semaphore/issues/16
https://github.com/appliedzkp/semaphore/issues/16

Soundness – Field arithmetic (2/n)

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

33

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2
https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

Soundness – Field arithmetic (3/n)

Missing overflow check (of a public circuit input)

https://github.com/eea-oasis/baseline/issues/34

34

https://github.com/eea-oasis/baseline/issues/34
https://github.com/eea-oasis/baseline/issues/34

Soundness – Field arithmetic (4/n)

Missing overflow check (of a public circuit input)

https://github.com/appliedzkp/semaphore/pull/96/

35

https://github.com/appliedzkp/semaphore/pull/96/
https://github.com/appliedzkp/semaphore/pull/96/

Soundness – R1CS

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

36

https://github.com/arkworks-rs/r1cs-std/pull/70
https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness – Trusted setup (paper)

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

37

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Soundness – Fiat-Shamir (code and papers)

Incomplete Fiat-Shamiring of protocol transcript

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-
affecting-girault-bulletproofs-and-plonk/

38

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Soundness – Circuit

Missing identifier value as public input, allowing replays

https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-
tech-7fc7beb4557b

39

https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b
https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b
https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b
https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b

Zero-knowledge – Application (Zcash, Monero)

Timing dependencies exploited to leak secrets and obtain oracles

https://eprint.iacr.org/2020/627.pdf

40

https://eprint.iacr.org/2020/627.pdf
https://eprint.iacr.org/2020/627.pdf

Zero-knowledge – Prover (Plonkup)

Missing (randomized) blinding to hide private inputs – potential ZK loss

https://github.com/dusk-network/plonk/pull/651

41

https://github.com/dusk-network/plonk/pull/651
https://github.com/dusk-network/plonk/pull/651

Completeness – DSL / Signatures

Valid signatures rejected, risk initially deemed negligible

https://github.com/starkware-libs/cairo-lang/issues/39

42

https://github.com/starkware-libs/cairo-lang/issues/39
https://github.com/starkware-libs/cairo-lang/issues/39

Conclusions

😌 Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

Safe code easier to write with DSLs (Cairo, Leo, etc.) and reusable gadgets/chips

Improvement in secure SDLC (initiatives like slsa.dev/, GitHub advanced security)

Relatively narrow attack surface in practice

43

Conclusions

😌 Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

Safe code easier to write with DSLs (Cairo, Leo, etc.) and reusable gadgets/chips

Improvement in secure SDLC (initiatives like slsa.dev/, GitHub advanced security)

Relatively narrow attack surface in practice

😱 Why be scared?

Few people understand zkSNARKs, even fewer can find bugs

Limited maturity level in many ZK/blockchain projects’ SDLC

Lack of tooling (testing, fuzzing, verification)

More ZK usage => more $$$ at stake => greater RoI for attackers
44

Conclusions

Learn from hardware circuit synthesizers?

HDL-to-netlist ≈ Program-to-constraints – same, but different

History of bugs and tooling

Testing methodologies

45

https://johnwickerson.github.io/papers/verismith_fpga20.pdf

https://johnwickerson.github.io/papers/verismith_fpga20.pdf
https://johnwickerson.github.io/papers/verismith_fpga20.pdf

Conclusions

Learning resources and projects:

zkproof.org community and events

zkhack.dev virtual event

zkvalidator.com initiative

zeroknowledge.fm podcast

zkStudyClub video series  
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y

46

https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

http://zkproof.org
http://zkhack.dev/
http://zkvalidator.com
http://zeroknowledge.fm
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y
http://zkproof.org
http://zkhack.dev/
http://zkvalidator.com
http://zeroknowledge.fm
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

¡Muchas gracias!

JP Aumasson

@veorq

CSO @ taurushq.com

Big thank yous for their help and feedback to:  
Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink,  
Daira Hopwood, Daniel Jacob Bilar, David Wong,  
Lúcás Meier, Mathilde Raynal

http://taurushq.com
http://taurushq.com

