Zero-knowledge proofs security, in practice

JP Aumasson

I @veorq
CSO @ taurushg.com

http://taurushq.com
http://taurushq.com

/me

Co-founder & CSO of a Swiss fintech (Taurus)

e High-assurance crypto custody tech https://taurushg.com
e Used by banks to protect and manage their BTC/ETH/etc.
e Running a regulated exchange https://t-dx.com

Crypto Dictionary

. 500 Tasty Tidbits for the
Curious Cryptographer

Cryptography and vulnerability research since ~2006 _ [:ryfl%ig:lasphy

A Practical Introduction
to Modern Encryption

e Designed crypto in the Linux kernel, Bitcoin, etc.
(SipHash, BLAKE2, BLAKE3)

e Wrote some books about cryptography

Jean-Philippe Aumasson
Foreword by Matthew 0. Green

ok de ey 218

https://aumasson.jp. https://twitter.com/veorq

https://taurushq.com
https://t-dx.com
https://aumasson.jp
https://twitter.com/veorq
https://taurushq.com
https://t-dx.com
https://aumasson.jp
https://twitter.com/veorq

Zero-knowledge proof?

|= “zero-knowledge architecture” (a.k.a. “zero-trust”)

|= “zero-knowledge encryption” (marketing term for client-side encryption)

© e o WHAT IS ZERO-KNOWLEDGE ENCRYPTION, AND
HOW DOES IT WORK?

&' w WRITTEN BY MATT AHLGREN RESEARCHED BY WSR TEAM JUNE 22, 2022 IN CLOUD STORAGE, PASSWORD MANAGERS
)

Zero-knowledge encryption is arguably one of the most secure ways of
protecting your data. In a nutshell, it means that cloud storage or backup
providers know nothing (i.e. have “zero-knowledge”) about the data you

store on their servers.

Zero Knowledge Architectures for Mobile
Applications

Protocolo de conocimiento cero

|= “zero-knowledge architecture” (a.k.a. “zero-trust”)

|= “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols...
Between a prover and a verifier
Which can be non-interactive

Known since the 1980s, only recently
used in practice at scale (zkSNARKS)

The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)

Shafi Goldwasser Silvio Micali Charles Rackoff
MIT MIT University of Toronto

Protocolo de conocimiento cero

|= “zero-knowledge architecture” (a.k.a. “zero-trust”)

|= “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols...
Between a prover and a veritier

Which can be non-interactive

Known since the 1980s, only recently Feuarre o
used in praCtice at Scale <Zk5NARK5) SCLQ::SPSLEMS' ntist Explains One Concept in 5 Levels of Diffic |ty|W|RED

4707354 s Jan 18,2022 Computer scientist Amit Sahai, PhD, is asked to explain the
0-kno Idg proofs to § different people; a child, a II ege student, a gra d ..more

httlos //www voutube com/watch?v fOGdb1CTubc

5

https://www.youtube.com/watch?v=fOGdb1CTu5c
https://www.youtube.com/watch?v=fOGdb1CTu5c

The simplest ZK proof

Schnorr’s proof of knowledge of discrete logarithm (x in y = gx mod p)

Probador Verificador
Pick a random r, send t = gr mod p

Send a random ¢

Send s =r + cx mod p
e

Verify that gs=t x yc

It works because gs = gr+ o = gr x (g¥c =1t x yc

©THE-ARTIST-64
3333333

Zero-knowledge proofs applications

Privacy of payments (a la Zcash and Monero), and of general computation (Aleo)
Scalability — via "ZK rollups”, preventing re-computation (though not always private)
Storage proofs, as in Filecoin’s proofs of spacetime

Mining, as in Aleo’s proofs of succinct work

Our proof-of-concept system allows the Police to prove to the public that the DNA profile of a
Presidential Candidate does not appear in the forensic DNA profile database maintained by the Police.
The proof, which is generated by the Police, relies on no external trusted party, and reveals no further
information about the contents of the database, nor about the candidate’s profile. In particular, no DNA
information is disclosed to any party outside the Police. The proof is shorter than the size of the DNA
database, and verified faster than the time needed to examine that database naively.

https://eprint.iacr.org/2018/046

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

Vibrant ecosystem

Examples of major projects in the ZK space, many other initiatives and research groups

¢ anoma @

aleo.org anoma.network arkworks.rs aztec.network
Ocelo & STARKWARE () zoas

celo.org protocol.al starkware.co z.cash

This talk

Focus on zkSNARKSs, a class of zero-knowledge proof systems

Fully succinct = O(1) proof size and O(circuit size) verification time

Based on my experience looking for bugs in
Groth16, used in Zcash, Filecoin, and many others

Marlin, a universal zkSNARK, used in Aleo

Circuits, and in many other related crypto

Lessons applies to other systems (Plonk, SONIC, etc.), and other complex systems

zkSNARKs and friends

zkSNARKSs are not the only proof systems used in practice
STARKS: no trusted setup, proof size not constant, post-quantum (StarkWare)

Bulletproofs: simpler, no trusted setup, but slower verification (Monero)

STARKWARE «- - - - — = Computational
4 Symmetric Cryptography | — — — — — b Trans parenc y @ Efﬁcil;m .
Asymmetric Cryptography Y

rora Post-Quantum f Future & Short
Ligero Secure Proofing Proofs
STARK

BulletProof

Marlin

Sapling

SLONK

Grothil6

|
|
|
|
|
|
|
|
|
| SONIC
|

|

STARK = Scalable, Transparent ARgument of Knowledge

Zero-knowledge proof (ZKP) systems

zkSNARKSs’ best years: 2018-2020

ZKP System LG L Protocol Transparent Universal IS0 Prog ramming
year Quantum Secure Paradigm
Pinocchiol*l {2013 zk-SNARK No No No Procedural
Geppettol*2 2015 zk-SNARK No No No Procedural
TinyRAME3 12013 zk-SNARK No No No Procedural
Buffetl*4] 2015 zk-SNARK No No No Procedural
ZoKratesl*] 2018 zk-SNARK No No No Procedural
xJsnark!36] 2018 zk-SNARK No No No Procedural
VRAMI¥] 2018 zk-SNARG No Yes No Assembly
vnTinyRAME8! 12014 zk-SNARK No Yes No Procedural
MIRAGEP] 2020 zk-SNARK No Yes No Arithmetic Circuits
Sonicl#°] 2019 zk-SNARK No Yes No Arithmetic Circuits
Marlin®1 2020 zk-SNARK No Yes No Arithmetic Circuits
PLONK2 2019 zk-SNARK No Yes No Arithmetic Circuits
SuperSonict*l 2020 zk-SNARK Yes Yes No Arithmetic Circuits
Bulletproofs*4/2018 Bulletproofs Yes Yes No Arithmetic Circuits
Hyrax[#] 2018 zk-SNARK Yes Yes No Arithmetic Circuits
Halo!6] 2019 zk-SNARK Yes Yes No Arithmetic Circuits
Virgo] 2020 zk-SNARK Yes Yes Yes Arithmetic Circuits
Ligero] 2017 zk-SNARK Yes Yes Yes Arithmetic Circuits
Auroral*) 2019 zk-SNARK Yes Yes Yes Arithmetic Circuits
zk-STARKDBOT 12019 zk-STARK Yes Yes Yes Assembly
ZilchBo1 Bl 2021 zk-STARK Yes Yes Yes Object-Oriented

https://www.wikiwand.com/en/Zero-knowledge proof

11

https://www.wikiwand.com/en/Zero-knowledge_proof
https://www.wikiwand.com/en/Zero-knowledge_proof

Why study zkSNARKSs security?

A major risk for decentralised platforms (L2 protocols, private transactions):
Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

12

Why study zkSNARKSs security?

As a cryptographer since ~2005, the most interesting crypto I've seen:
Intricate constructions with non-trivial components
“Simple but complex" — non-interactive, but many moving parts
“Multidimensional" way to reason about security

“Real-worldness”: not just papers — “code is specs”

13

What's zkSNARKs security? (it depends™)

Soundness: Invalid proofs should always be rejected (solvencia)
Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

14

What's zkSNARKs security? (it depends™)

Zero-knowledge: Proofs should not leak secret information (conocimiento cero)

In practice, succinct proofs of large programs can leak only little data

15

What's zkSNARKSs security? (it depends™)

Soundness: Invalid proofs should always be rejected (solvencia)

Most obvious attack, often the highest risk in practice:
Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information (conocimiento cero)

In practice, succinct proofs of large programs can leak only little data

Completeness: Valid proofs should always be accepted (totalidad)
Often a DoS/usability risk that may be further exploited

All programs/circuits supported should be correctly processed

16

Who can find bugs?

. Developers of the code (manually or via testing)
Developers of other projects’ code

External auditors of the code

o 0 = »

. Users of the code, accidentally &

E. External “attackers” &

Security goal: you want A|B|C to find bugs before D |E

17

Bug hunting challenges

Practical zkSNARKSs are recent, thus auditors often have
Limited experience auditing zkSNARKSs
Limited knowledge of the theory and of implementations’ tricks
Limited “checklist" of bugs and bug classes
Limited tooling and methodologies

Limited documentation from the projects

How to make useful work nonetheless?

18

Bug hunting challenges

People think that finding vulnerabilities is about finding holes in code.
But at some level it's not really about that. It's about understanding that
the code itself is a hole in the swirling chaos of the world and just letting
a little bit of that chaos in allows you to illuminate the whole thing.

Dave Aitel, unintentionally on ZK proofs bug hunting
https://seclists.org/dailydave/2022/q2/3

19

https://seclists.org/dailydave/2022/q2/3
https://seclists.org/dailydave/2022/q2/3

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)
More threat analysis, to understand the application’s unique/novel risks
Practical experience: writing PoCs, circuits, proof systems, etc.
Learn previous failures, for example from...

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

20

General workflow, and failure examples

Computation
Circuit definition

Arithmetization

Non-interactive proof

Integration

21

General workflow, and failure examples

Computation The program’s logic is not secure

Circuit definition The circuit is not equivalent to the program

Arithmetization The constraint system fails to enforce a constraint
Non-interactive proof Insecure choice of primitives/parameters/properties

Integration The application allows replays of previous proofs

22

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting
Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

23

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting
Constraint system not effectively enforcing certain constraints
Insecure generation or protection of private values

Break zero-knowledge, for example by exploiting
Private data treated as public variables

Application-level “metadata attacks”

24

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting
Constraint system not effectively enforcing certain constraints
Insecure generation or protection of private values
Break zero-knowledge, for example by exploiting
Private data treated as public variables
Application-level “metadata attacks”
Break completeness, for example by exploiting
Incorrect constraint synthesis behavior on edge cases (e.g. number of private vars)

Gadget composition failure caused by type mismatch between gadget i/o values

25

How to break zkSNARKs? (2/2)

Break (off-chain) software, via any bug leading to
L eakage of data, including via side channels (timing, oracles, etc.)
Any form in insecure state (code execution, DoS)
Compromise the “supply-chain", via
Trusted setup's code and execution
Build and release process integrity
Software dependencies

Break (on-chain) software (incl. verifier) via smart contract bugs, logic flaws, etc.

26

Need structure/methodology..

A failure in a lower layer can jeopardise the security of all upper layers

© Adversarial input & & Protocol input & = Config &

\

Application

Prover/verifier

Arithmetization / constraints generation
from fixed or user-defined circuit

Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies

What to look for, and where?

A failure in a lower layer can jeopardise the security of all upper layers

© Adversarial input & & Protocol input & = Config &

\

Zero-knowledge greater risks —— Application

Completeness anc Prover/verifier
Soundness greater risks .

Arithmetization / constraints generation
from fixed or user-defined circuit

> Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies

23

Divide and conquer..

A failure in a subcomponent can jeopardise the security of all upper layers

© Adversarial input & & Protocol input & = Config &

\ -

Key/nonce management, lesting Application Interface, Side channels, Replays

—ashing, PRF, Algebraic commitment,

, -lat-Shamir, Polynomial commitments,
Randomness, Merkle trees, ... Prover/verifier

—lash-to-curve, linear algebra, ...

Arithmetization / constraints generation

RICS,AIR, pol als, ...
from fixed or user-defined circuit POYTIOIT NG
Field arithmetic, elliptic curves group operations Fast operations, multiexp, ..

Platform: language, runtime, OS, hardware, dependencies RNG, ...

29

Understand composability conditions..

Security 101: Input validation must be defined, implemented, and tested

© Adversarial input U & Protocol input & & Config &

Key management, lesting Application Interface, Side channels

Example: which component is responsible
for group membership checks?

Contracts between components must be defined
to prevent insecure composition

Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment

Randomness, Merkle trees Prover/verifier Linear algebra, Multi-exp.
Polynomial commitments, Fiat-Shamir transforms, etc. etc.

30

Real-word crypto bugs..

-

m'ﬁa‘" b' iIr.c “] NATIONAL

& bserny
Collect them If you dare!
S "‘“’,2 \

‘-.‘.”

COVER THEIR

SECRET LIVESS

GEOCRAPHIC

31

Soundness — Field arithmetic (1/n)

Vulnerability allowing double spend #16

@ o{[e1-1-«M poma opened this issue on 26 Jul 2019 - 2 comments

e poma commented on 26 Jul 2019 - edited ~ @

Looks like in Semaphore.sol#L83 we don't check that nullifier length is less than field
modulus. So nullifier_hash +
21888242871839275222246405745257275088548364400416034343698204186575808495617
will also pass snark proof verification if it fits into uint256, allowing double spend.

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

32

https://github.com/appliedzkp/semaphore/issues/16
https://github.com/appliedzkp/semaphore/issues/16

Soundness — Field arithmetic (2/n)

fix: don't allow double-spending with a large nullifier #2

)l V(- [-{ [sragss merged 1 commit into al6z:main from kobigurk:fix/nullifier-exploit (0 on 26 Jan

L) Conversation 1 -0- Commits 1 [l Checks o0 Files changed 2

e kobigurk commented on 26 Jan Contributor | (&) ***

Currently the nullifier is not checked to be within the SNARK field. This allows creating a nullifier which is still a valid
bytes32/uint256 that has the same result modulo the field, but the spent nullifier dictionary treats them as different, allowing
double-spending.

ICY

-O- e fix: don't allow double-spending with a large nullifier f615802

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/al6z/zkp-merkle-airdrop-contracts/pull/2

33

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2
https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

Soundness — Field arithmetic (3/n)

Potential security bug with the zk-SNARK verifier

@) - weijiekoh opened this issue on 21 Mar 2020 - 2 comments - Fixed by #43

weijiekoh commented on 21 Mar 2020 © -

Expected Behavior

The Verifier.verify() function, not the function that calls it (i.e.
Shield.createMSA() and Shield.createP0() , should require that each public input to
the snark is less than the scalar field:

Missing overflow check (of a public circuit input)

https://github.com/eea-oasis/baseline/issues/34

34

https://github.com/eea-oasis/baseline/issues/34
https://github.com/eea-oasis/baseline/issues/34

Soundness — Field arithmetic (4/n)

210 - // If the values are not in the correct range, the pairing check will fail.
2N + // If the values are not in the correct range, the pairing check will fail
212+ // because by EIP197 it verfies all input.

211 213 Proof memory proof;

212 214 proof.A = Pairing.GlPoint(al[@], alll);

213 215 proof.B = Pairing.G2Point([b[@][@], b[@][1]], [b[1]1[@], bl[1]1[11]1);

3 @@ -219,7 +221,7 @@ contract Verifier {

219 221 if (input.length + 1 !'= vk.IC.length) revert Pairing.InvalidProof();

220 222 Pairing.G1lPoint memory vk_x = vk.IC[O];

221 223 for (uint256 i = @0; i < input.length; i++) {

222 - if (input[i] >= Pairing.SCALAR_MODULUS) revert Pairing.InvalidProof();
2248 + // By EIP196 the scalar_mul verifies it's input is in the correct range.

223 225 vk_Xx = Pairing.addition(vk_x, Pairing.scalar_mul(vk.IC[i + 1], input[i]));

Missing overflow check (of a public circuit input)

https://github.com/appliedzkp/semaphore/pull/96/

https://github.com/appliedzkp/semaphore/pull/96/
https://github.com/appliedzkp/semaphore/pull/96/

Soundness — R1CS

Discuss: enforce mul_by inverse #/0

Il Ce sl weikengchen merged 7 commits into master from fix-mul-by-inverse (83 on 6 Jul

L) Conversation 12 -0- Commits 7) Checks 5 Files changed 3

weikengchen commented on 4 Jul 2021 - edited ~ Member (&) «-°

Description

It seems that the mul_by_inverse implementation has a soundness issue that the
newly allocated d_inv does not need to be the inverse of d but could be any value.
This can be a soundness issue as the poly gadgets have used this API.

fn mul_by_inverse(&self, d: &Self) —> Result<Self, SynthesisError> {
let d_inv = if self.is_constant() || d.is_constant() {
d.inverse()?
if self.is_constant() || d.is_constant() {
let d_inv = d.inverse()?;
Ok(d_inv x self)
} else {

RUSTSEC-2021-0075
Flaw in

unsound R1CS constraint systems

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

36

https://github.com/arkworks-rs/r1cs-std/pull/70
https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness — Trusted setup (paper)

Background

On March 1, 2018, Ariel Gabizon, a cryptographer employed by the Zcash Company at the time, discovered
a subtle cryptographic flaw in the [BCTV14] paper that describes the zk-SNARK construction used in the
original launch of Zcash. The flaw allows an attacker to create counterfeit shielded value in any system that
depends on parameters which are generated as described by the paper.

This vulnerability is so subtle that it evaded years of analysis by expert cryptographers focused on zero-
knowledge proving systems and zk-SNARKSs. In an analysis [Parno15] in 2015, Bryan Parno from Microsoft
Research discovered a different mistake in the paper. However, the vulnerability we discovered appears to
have evaded his analysis. The vulnerability also appears in the subversion zero-knowledge SNARK scheme
of [Fuchsbauer17], where an adaptation of [BCTV14] inherits the flaw. The vulnerability also appears in the
ADSNARK construction described in [BBFR14]. Finally, the vulnerability evaded the Zcash Company’s own
cryptography team, which includes experts in the field that had identified several flaws in other parts of the
system.

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

37

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Soundness — Fiat-Shamir (code and papers)

Coordinated disclosure of
vulnerabilities affecting The Problem
GiraUIt, Bu" etproofs' and Why is this type of vulnerability so widespread? It really comes down to a

combination of ambiguous descriptions in academic papers and a general

P I on K lack of guidance around these protocols.
LEAVE A COMMENT
e 7ZenGo’s zk-paillier
By Jim Miller « ING Bank’s zkrp (deleted)
e SECBIT Labs’ ckb-zkp The vulnerabilities in one of these proof systems, Bulletproofs, stem from a
e Adjoint, Inc.’s bulletproofs mistake in the original academic paper, in which the authors recommend

e Dusk Network’s plonk
e Iden3’s SnarkJS
e ConsenSys’ gnark

an insecure Fiat-Shamir generation. In addition to disclosing these issues
to the above repositories, we’ve also reached out to the authors of
Bulletproofs who have now fixed the mistake.

Incomplete Fiat-Shamiring of protocol transcript

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-
affecting-girault-bulletproofs-and-plonk/

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Soundness — Circuit

Filecoin —one PoREP vulnerability found by

Trapdoor Tech fix(storage-proofs-porep): add missing

public input for replica-id #1088

Trapdoor Tech discovered a serious vulnerability of the POREP circuit (V25).

Using this vulnerability, the calculation of SDR (Precommitl) can be directly

omitted. Only one copy of all Sector Replica data is required. After the Trapdoor dignifiedquire merged 6 commits into master from fix/sdr-input (C
team communicated with the official in the first time, the official has quickly on 4 May 2020

submitted the patch:

Missing identifier value as public input, allowing replays

https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-
tech-7fc7beb4557b

39

https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b
https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b
https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b
https://starli.medium.com/filecoin-one-porep-vulnerability-found-by-trapdoor-tech-7fc7beb4557b

Zero-knowledge — Application (Zcash, Monero)

We exploit the fact that the time to produce a proof is correlated with the value of the prover’s
witness. As the witness contains the transaction amount, we expect this amount to be correlated
with the proof time. For example, Zcash’s proofs decompose the transaction amount into bits and

Remote Side-Channel Attacks on Anonymous Transactions

Florian Tramer* Dan Boneh Kenneth G. Paterson compute an elliptic curve operation for each non-zero bit. The proof time is thus strongly correlated
Stanford University Stanford University ETH Ziirich with the Hamming weight of the transaction amount, which is in turn correlated with its value.
tramer@cs.stanford.edu dabo@cs.stanford.edu kenny.paterson@inf.ethz.ch

Abstract: Privacy-focused crypto-currencies, such as Zcash or Monero, aim to provide
strong cryptographic guarantees for transaction confidentiality and unlinkability. In this
paper, we describe side-channel attacks that let remote adversaries bypass these
protections. We present a general class of timing side-channel and traffic-analysis
attacks on receiver privacy. These attacks enable an active remote adversary to identify
the (secret) payee of any transaction in Zcash or Monero. The attacks violate the
privacy goals of these crypto- currencies by exploiting side-channel information leaked
by the implementation of different system components. Specifically, we show that a

Timing dependencies exploited to leak secrets and obtain oracles

https://eprint.iacr.org/2020/627.pdf

40

https://eprint.iacr.org/2020/627.pdf
https://eprint.iacr.org/2020/627.pdf

Zero-knowledge — Prover (Plonkup)

H dusk-network / plonk ' Public

<> Code () Issues 26 §9 Pull requests 3 CJ) Discussions () Actions] Projects 1

Add blinding scalars #6571

e 3 el Xxevisalle merged 6 commits into master from blinding (5 6 days ago

C)) Conversation 29 -o- Commits 6 [F) Checks 5 Files changed 12

=8F moCello commented on 14 Dec 2021

Add blinding scalars in round 1, 2 and 3 of the proof

2 = moCello assigned xevisalle on 14 Dec 2021

Missing (randomized) blinding to hide private inputs — potential ZK loss

https://github.com/dusk-network/plonk/pull/651

https://github.com/dusk-network/plonk/pull/651
https://github.com/dusk-network/plonk/pull/651

ompleteness — DSL / Signa

ures

h
@ veorq commented yesterday @ -

crypto.signature.signature.verify() rejects signatures with an r, inverse s, or message (hash) greater than 2x%251 <
EC_ORDER :

cairo-lang/src/starkware/crypto/starkware/crypto/signature/signature.py
Lines 199 to 201 in 4e23351

199 assert 1 <= r < 2 %k N _ELEMENT BITS ECDSA, "r = %s" % r
200 assert 1 <= w < 2 %k N_ELEMENT BITS ECDSA, "w = %s" % w
201 assert @ <= msg_hash < 2 *x N_ELEMENT_BITS_ECDSA, "msg_hash = %s" % msg_hash

There's a gap of ~27196 values, thus a probability to hit aninvalid r or s thatis of the order of 27(196-251)/2 = 2754,

when generating an ECDSA sig for some fixed message using a standard algorithm (rather than Cairo's sign() , which
enforces these constraints).

| can't think of a specific attack scenario at the moment, but | would expect to find applications where either

1. that accidental failure rate would be unacceptably high, or

2. adversaries could bruteforce invalid sigs to do some kind of DoS, or worse (with plausible deniability)

| probably miss some of the context, and you may have a good reason to verify sigs that way.

Valid signatures rejected, risk initially deemed negligible

https://github.com/starkware-libs/cairo-lang/issues/39

42

https://github.com/starkware-libs/cairo-lang/issues/39
https://github.com/starkware-libs/cairo-lang/issues/39

Conclusions

% Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)
Safe code easier to write with DSLs (Cairo, Leo, etc.) and reusable gadgets/chips
Improvement in secure SDLC (initiatives like slsa.dev/, GitHub advanced security)

Relatively narrow attack surface in practice

43

Conclusions

% Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)
Safe code easier to write with DSLs (Cairo, Leo, etc.) and reusable gadgets/chips
Improvement in secure SDLC (initiatives like slsa.dev/, GitHub advanced security)

Relatively narrow attack surface in practice
(2 Why be scared?

Few people understand zkSNARKs, even fewer can find bugs
Limited maturity level in many ZK/blockchain projects” SDLC
Lack of tooling (testing, fuzzing, verification)

More ZK usage => more $$$ at stake => greater Rol for attackers

44

Conclusions

Learn from hardware circuit synthesizers?

HDL-to-netlist = Program-to-constraints — same, but different

History of bugs and tooling

Testing methodologies

Verilog
generation

Synthesis

Verilog
netlist

Reduction

Equivalence
check

Finding and Understanding Bugs in FPGA Synthesis Tools

Yann Herklotz
yann.herklotz15@imperial.ac.uk

Imperial College London
London, UK

ABSTRACT

All software ultimately relies on hardware functioning correctly.
Hardware correctness is becoming increasingly important due to
the growing use of custom accelerators using FPGAs to speed up
applications on servers. Furthermore, the increasing complexity of
hardware also leads to ever more reliance on automation, meaning
that the correctness of synthesis tools is vital for the reliability of
the hardware.

This paper aims to improve the quality of FPGA synthesis tools
by introducing a method to test them automatically using randomly
generated, correct Verilog, and checking that the synthesised netlist
is always equivalent to the original design. The main contributions
of this work are twofold: firstly a method for generating random
behavioural Verilog free of undefined values, and secondly a Verilog

o =] ~ (=3} w - w oo -

John Wickerson
j-wickerson@imperial.ac.uk
Imperial College London
London, UK
module top (y, clk, wl);
output y;
input clk;

input signed [1:0] wil;
reg rl = 1'bo;
assign y = ri;
always @(posedge clk)
if ({-1'b1 == wl1}) r1 <= 1'b1;
endmodule

Figure 1: Vivado bug found automatically by Verismith. Vi-
vado incorrectly expands -1’b1 to -2’b11 instead of -2’b01.
The bug was reported and confirmed by Xilinx.!

nttps://johnwickerson.github.io/papers/verismith fpga20.pdf

45

https://johnwickerson.github.io/papers/verismith_fpga20.pdf
https://johnwickerson.github.io/papers/verismith_fpga20.pdf

Conclusions

Learning resources and projects:
zk-SNARKSs: A Gentle Introduction

zkproof.org community and events

Anca Nitulescu

zkhack.dev virtual event https://www.di.ens.fr/~nitulesc/files/Survey-SNARKSs.pdf

zkvalidator.com initiative

zeroknowledge.fm podcast

zkStudyClub video series
http://youtu.be/playlist?list=PL|80z0c]m8QHmM 9BdZ1BqcGbgE-BEn-3Y

46

http://zkproof.org
http://zkhack.dev/
http://zkvalidator.com
http://zeroknowledge.fm
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y
http://zkproof.org
http://zkhack.dev/
http://zkvalidator.com
http://zeroknowledge.fm
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

iMuchas gracias!

— JP Aumasson Big thank yous for their help and feedback to:
@veorq Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink,
Daira Hopwood, Daniel Jacob Bilar, David Wong,

CSO @ taurushqg.com Ldcas Meier, Mathilde Raynal

http://taurushq.com
http://taurushq.com

