Algebraic methods for cryptanalysis

Jean-Philippe Aumasson

1. State-of-the-art algebraic methods

2. Attack on a real-world cipher

1. State-of-the-art algebraic methods

Block cipher

E:{0,1}* x {0,1}" — {0,1}"

k: secret key size

n: block size

eg.,.k=n=128

family of permutations {Ex } (0,13«

inverse mapping E, ' : {0,1}% x {0,1}" — {0,1}"
encryption: M — C = E¢ (M)

decryption: C — M = E*(C)

ex: DES, AES, IDEA

vV v. vy

vV v.vY

Stream cipher

E:{0,1}* x {0,1}V — {0,1}*

k: secret key size

v: initial value (1V) size

(. keystream size

e.g., k =128,n =96, (< 25

pseudo-random generator with seed (V,K)
encryption: M — C =M @ E¢ (V)

decryption: C — M = C @ E¢ (V)

ex: RC4 (WEP/WPA), A5/1 (GSM), EO (Bluetooth)

vV V. vV vV vV Vv VvY

Standard adversarial model for stream ciphers

» algorithm of the cipher known

» key K fixed and unknown

» adversary makes chosen-IV queries Ex (V)
» adversary tries to recover (information on) K
>

adversary tries to distinguish Ex from a random
generator

Exhaustive key search: 2%~ trials on average

Stream ciphers often described as algorithms

Ex: RC4 [Rivest-94]

.fori=0,...,255
T[i] <

.fori=0,...,255
j— (j+T[i]+K[i]) mod 256
T[i] < T[]

o U A WN R

Any stream cipher E : (K,V) +— S € {0, 1}* is associated
with ¢ polynomial equations over GF(2) , e.g.

So = KoKioK3z7VaV7 4+ KoK3VoVg + Ky + Ks + Vg
S; = K3K4VoViVo + K4V3VoVg + V7 + Vg

Sic1 = KoKiKaKs 4+ VoViVoVaV, 41

Any stream cipher E : (K,V) +— S € {0, 1}* is associated
with ¢ polynomial equations over GF(2) , e.g.

So = KoKioK3z7VaV7 4+ KoK3VoVg + Ky + Ks + Vg
S; = K3K4VoViVo + K4V3VoVg + V7 + Vg

Sic1 = KoKiKaKs 4+ VoViVoVaV, 41

For security, equations should be

» dense
» of high degree

Ideally, each coefficient null with prob. 1/2

Classical algebraic attacks onE : (K,V)+— S

» find low-degree equations fi(K,V,S) =0
» solve system, to recover K when V and S known
(NP-hard)

Classical algebraic attacks onE : (K,V)+— S

» find low-degree equations fi(K,V,S) =0
» solve system, to recover K when V and S known
(NP-hard)

State-of the art methods:

» find Grobner bases of a polynomial ideal
» algorithms F4, Fs, XL, XSL

Ex: 40 random quadratic equations in 20 variables over
GF(28) solvable in 25 CPU cycles [Yang et al.-07]

How to exploit the algebraic structure without solving an
algebraic system?

Cube attacks [Dinur-Shamir-09]

How to exploit the algebraic structure without solving an
algebraic system?

Cube attacks [Dinur-Shamir-09]
General idea:

» high-order differentiation to obtain linear equations
» solve a linear system in O(n?)

Differentiation n times of a degree-n polynomial yields the
coefficient of the highest-degree monomial

f(X1, X2, X3, Xs) = Xp 4 Xy XXz 4+ X1 XoX4
X1+ XeXo X3 + X1 Xo Xy + 0 x X3 XoX3X4

Sum over all values of (X, X5, X3, X4):

£(0,0,0,0)+f(0,0,0,1)+f(0,0,1,0)+--+f(1,1,1,1) = 0

Differentiation m < n times of degree-n polynomial yields
a polynomial of degree < (n —m)

f(X1, X2, X3, Xs) = X+ X1 XoX3 + X1 XoX4
= X1+ X1 Xo(X3 + Xy)

Fix X3 and X, sum over all values of (Xy, X,):

Z f(X1, X2, X3, Xa) = 4 x X+ (X5 + Xy)
(X1,X2)€{0,1}?
= X3+ X4

X1 and X, public and variable (initial value)
X3 and X, fixed and unknown (secret key)

Black-box queries to f(-, -, X3, X4) with chosen (X;, X)

X1 and X, public and variable (initial value)
X3 and X, fixed and unknown (secret key)
Black-box queries to f(-, -, X3, X4) with chosen (X;, X)

Evaluate of (X5 + X4) via order-2 derivative:

Z (X1, X2, X3, Xq) = X3 + X4
(X1.X2)€{0,1)2

Just need to know that the factor of X1 X, is (X35 + X4)

On a stream cipher f : (K,V) — S:

Phase 1: find monomials with linear derivative

f(K,V) = "'+V1V3V5V7(K2+K3+K5)—|—-~~
f(K,V) = -+ Vi1VoVeVgVia(Ky + Ky) + - -
f(K,V) = "'+V3V4V5V6(K3+K4+K5)—|—---

(reconstruct polynomials with linearity tests)
Phase 2: evaluate the polynomials in K, solve the system

Complexity: exponential in the order of derivatives,
polynomial in the key size

Variant: cube testers
[Aumasson-Dinur-Meier-Shamir-09]

» make high-order differentiation
» compute statistics on values obtained

Attack more rounds than standard cube attacks

Use as distinguisher, not for key-recovery

Summary (cube attacks)

» recover keys of ciphers of low degree over GF(2)

» high-order derivative to obtain a linear system of
equations

Open problems

» how to choose good variables for differentiation?
» how to adapt to extensions of GF(2)?

2. Attack on a real-world cipher

[Aumasson-Dinur-Henzen-Meier-Shamir-09]

Grain-128

state-of-the-art design (2006)

by Hell, Johansson (Uni Lund), Meier (FHNW)
developed within UE NOE project (eSTREAM)
known attacks on reduced versions only
implemented in the Bouncycastle Java library

vV v.v. v Yy

Grain-128

128-bit key, 96-bit IV
degree-(2 + 3) update function (deg NFSR= 2, deg h = 3)

oy
19 1 6 1

Method for finding variables for differentiation:

Evolutionary algorithm : generic discrete optimization
tool

In a nutshell: population = subset of variables

initialize population pseudorandomly
reproduction (crossover + mutation)
selection of best fitting individuals

4. goto 2.

w N e

#generations (steps 2-4) before halting = parameter

Efficient implementation of derivation over several
instances:

» on hardware field-programmable gate array (FPGA)
» parallelization 256 x 32

LFSR Key and IV generation incrementer
128 partial IV o s_inst
offsetq offsety offsets offsetom 1
"”f "‘T '“T mi’ e_inst
o
Ccv Ccv Ccv “ e Ccv =
router router router router s
c
o
. : o
Key Vo 1Vy IV, IVom_y g
: E=]
9% 9% % i % «
: >
¥ £
n

>-
<
Grain_1 Grain_2 Grain_3| +°+°* |Grain_2" g::
<

32 32 32 32

Outy Outy Outy Outom_

Output collection

High-complexity attack

» 240 for order-40 derivation
» 64 times
» 256 clockings per trial

254 basic operations in total

High-complexity attack

» 240 for order-40 derivation
» 64 times
» 256 clockings per trial

254 basic operations in total

Results

Imbalance observed on reduced version with up to 237
initialization clockings (out of 256)

= derivative is an imbalanced Boolean function

Extrapolation (Matlab)

By standard general linear regression

257|
g 240)
g e B
3 2 256
H c
g 220 g
g y'e g
= s
£ £
200

60 74
Cube size Cube size

= order-77 differentiation gives imbalanced function

Summary (attack on Grain-128)

» combines discrete optimization (EA) and cube testers
» first “cracking machine” for a stream cipher
» Grain-128 arguably broken (no 128-bit security)

Open problems

» which other ciphers are vulnerable?
» optimization: insights on the search space topology?

Algebraic methods for cryptanalysis

Jean-Philippe Aumasson

