
State of the hash:
SHA-3 and beyond

Jean-Philippe Aumasson

1 / 50

Agenda

I Background material
I NIST’s SHA-3 competition
I The SHA-3 candidate BLAKE
I Updated cryptanalysis of Skein
I On lightweight hashing (QUARK)
I Conclusions

2 / 50

What is a crypto hash?

HASH, x. There is no definition for this
word—nobody knows what hash is.
Ambrose Bierce, The Devil’s Dictionary

Arbitrary long string H−→ Short random-looking string

a.k.a.
I Modification detection codes
I Message authentication codes (when keyed)
I Cryptographers’ Swiss Army Knives

3 / 50

Applications of hash functions

Generation of secure keys

H(physical entropy)

Key derivation
H(salt, password)

Digital signatures

Sign
(
H(salt, message)

)
MAC’s

H(key, message)

4 / 50

Applications of hash functions
Passwords storage

H(salt, password)

Forensics, e.g., proofs of non-modification

H(key, evidence)

Random oracles in protocols, e.g. challenge-response

H(key, random challenge)

Construction of pseudorandom generators

H(key,nonce,1),H(key,nonce,2), . . .

5 / 50

Hash functions in standards: DSS, PKCS #1, NIST
SP 800-108 (HMAC), -56a (key derivation), -106
(randomized hashing), etc.

Hash functions are ubiquitous and thus difficult to replace
(≈850 uses of MD5 in Windows [Ferguson, 2006])

Currently deployed hashes suffer weaknesses

⇒ we need good hash algorithms!

Difficult to define “goodness”:
I Many different security requirements, sometimes

difficult to formalize and weigh
I Many performance metrics and platforms (HW vs

SW; speed vs. space, etc.)

6 / 50

Hash functions in standards: DSS, PKCS #1, NIST
SP 800-108 (HMAC), -56a (key derivation), -106
(randomized hashing), etc.

Hash functions are ubiquitous and thus difficult to replace
(≈850 uses of MD5 in Windows [Ferguson, 2006])

Currently deployed hashes suffer weaknesses

⇒ we need good hash algorithms!

Difficult to define “goodness”:
I Many different security requirements, sometimes

difficult to formalize and weigh
I Many performance metrics and platforms (HW vs

SW; speed vs. space, etc.)

6 / 50

Security requirements

I Collision resistance [it should be hard to. . .]
find M 6= M ′ s.t. H(M) = H(M ′)

I Second preimage resistance
given M find M ′ 6= M s.t. H(M) = H(M ′)

I Preimage resistance
given H(M) (but not M) find M ′ s.t. H(M) = H(M ′)

I Pseudorandomness
distinguish H(K , ·) from a random function

I Unpredictability
predict H(K ,M) for unqueried M ’s

I Indifferentiability
find “related” sets of input/output values

I Etc.

7 / 50

Security requirements

I Collision resistance [it should be hard to. . .]
find M 6= M ′ s.t. H(M) = H(M ′)

I Second preimage resistance
given M find M ′ 6= M s.t. H(M) = H(M ′)

I Preimage resistance
given H(M) (but not M) find M ′ s.t. H(M) = H(M ′)

I Pseudorandomness
distinguish H(K , ·) from a random function

I Unpredictability
predict H(K ,M) for unqueried M ’s

I Indifferentiability
find “related” sets of input/output values

I Etc.

7 / 50

Generic methods

i.e. that work for any n-bit hash function

I Collision: birthday search in O(2n/2)

I (Second) preimage: bruteforce search in O(2n)

I Pseudorandomness: exhaustive search in O(2|K |)

I Unpredictability: exhaustive search in O(2|K |)

I Indifferentiability: depends on the relation

If a hash admits a method substantially faster than the
best generic attack then it’s “theoretically unideal”

8 / 50

An ideal hash function

9 / 50

SHA-2 (2002)

NSA design, 224-, 256-, 384-, or 512-bit digests

Only attacks on reduced versions, but suffers “length
extensions”, “fixed points”, “multicollisions”, etc.

Current NIST recommendation
10 / 50

SHA-1 (1995)

NSA design, 160-bit digests

Almost practical collision attacks (≈ 260 vs. 280 ideally)

“Federal agencies should stop using SHA-1 for digital
signatures, digital time stamping and other applications
that require collision resistance” [NIST]

11 / 50

MD5 (1991)

Ron Rivest design, 128-bit digests

Collisions can be found in milliseconds

Can find colliding executables, colliding public-keys, etc.

Should now be avoided

12 / 50

The Merkle-Damgård construction

Length extension: can find H(M‖padding‖M ′) given only
H(M) (application: forgery of MAC’s).

13 / 50

Beyond Merkle-Damgård
HAIFA [Biham-Dunkelman, 2006]

I Augmented version of Merkle-Damgård
I Counter to differentiate compression functions
I Proven “indifferentiable from a random oracle”

Sponge functions [Bertoni-Daemen-Peeters-Van Assche, 2007]

I Use a permutation rather than compression function
I Proven “indifferentiable from a random oracle”

14 / 50

NIST’s SHA-3 competition

≈ AES competition for hash functions
http://nist.gov/hash-competition

15 / 50

NIST’s SHA-3 competition

I Nov 2007: SHA-3 competition announced
I Oct 2008: 64 submissions received
I Dec 2008: 51 accepted for first round
I Feb 2009: 1st SHA-3 Conference
I Jul 2009: 14 semifinalists announced
I Aug 2010: 2nd SHA-3 Conference
I end 2010: 4-6 finalists announced
I spring 2012: 3rd SHA-3 Conference
I sometime in 2012: winner announced

16 / 50

Formal requirements for SHA-3

I Support digests of 224, 256, 384, and 512 bits
I Support messages of at least 264 bits
I Support HMAC, randomized hashing, PRFs
I Resistance to length extension
I One-pass mode

“NIST expects SHA-3 to have a security strength that is at
least as good as the hash algorithms currently specified in
FIPS 1802, and that this security strength will be achieved
with significantly improved efficiency.” [NIST]

17 / 50

64 submissions from all around the world
From both industry, academia, and government agencies

I EADS, Gemalto, Hitachi, IBM, Intel, Microsoft,
Orange, Qualcomm, Sagem, Sony, STµ, etc.

I ENS (fr), EPFL, ETHZ (ch), KU Leuven (be), METU
(tr), MIT (us), Weizmann Institute (il), etc.

I US Sandia Labs, French InfoSec Agency (DCSSI)

Great variety of designs
I AES-based
I ARX (Add, Rotate, Xor)
I Elliptic curve-based
I Parallel tree hashing (MD6)
I “Provably secure” (lattices, coding theory)

18 / 50

Many candidates broken

http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

19 / 50

Many candidates broken

http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

20 / 50

The 14 round-2 candidates
Name Submitter Origin Type

BLAKE Aumasson ARX
Blue Midnight Wish Knapskog ARX
CubeHash Bernstein ARX
ECHO Gilbert AES
Fugue Jutla AES
Groestl Knudsen AES
Hamsi Küçük S-box
JH Wu S-box
Keccak Daemen S-box
Luffa Watanabe S-box
Shabal Misarsky mix
SHAvite-3 Dunkelman AES
SIMD Leurent mix
Skein Schneier ARX

21 / 50

Security

All round-2 candidates are yet unbroken

But some are less unbroken than others, due to
I Attacks for a large fraction of the total #rounds
I Attacks on building blocks (compression functions)
I Thin security margins

Impact of such results unclear, but reduces confidence. . .

(SHA-3 should not “look” weaker than SHA-2!)

22 / 50

Software benchmarks on eBASH

Maintained by Daniel J. Bernstein and Tanja Lange
http://bench.cr.yp.to/

23 / 50

Software benchmarks on eBASH
Based on the SUPERCOP toolkit (System for Unified Performance

Evaluation Related to Cryptographic Operations and Primitives)

Implementations are collected and included in the latest
SUPERCOP release

When run on your machine SUPERCOP does:
for each hash function H

for each implementation of H
for each relevant architecture (x86, amd64, etc.)

for each compiler available (gcc, icc, xlc, etc.)

for each compiler options set (from a defined set)

measure speed for various message lengths

The fastest combinations are reported on
http://bench.cr.yp.to/results-sha3.html

24 / 50

eBASH example

25 / 50

eBASH example

26 / 50

Many open issues

How to make fair performance comparisons?

How important is each platform?

When is hash performance critical?

What’s the impact of unexploited “vulnerabilities”?

Announcement of 4-6 finalists due in December 2010

27 / 50

BLAKE

Co-designed with Luca Henzen (ETHZ), Willi Meier
(FHNW), Raphael C.-W. Phan (Uni Loughborough, UK)

Our design goals:
I Be faster and more secure than SHA-2
I Make the specs readable by non-experts
I Allow implementation space/time trade-offs
I Do not reinvent the wheel (build on previous designs)

I Bernstein’s ChaCha stream cipher
I Biham and Dunkelman’s HAIFA construction

28 / 50

How BLAKE works (compression function)

Initialize an internal state of 16 words
v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15


Different inputs give different states
Round function: use of a bijective mapping G to transform
each column, then each diagonal

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

29 / 50

How BLAKE works (compression function)

Initialize an internal state of 16 words
v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15


Different inputs give different states
Round function: use of a bijective mapping G to transform
each column, then each diagonal

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

30 / 50

How BLAKE works (compression function)

Initialize an internal state of 16 words
v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15


Different inputs give different states
Round function: use of a bijective mapping G to transform
each column, then each diagonal

G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14) G3(v3 , v7 , v11, v15)

G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

31 / 50

How BLAKE works (G function)

For BLAKE-32 — version with 32-bit words, 32-byte digests

a += mi ⊕ consti

a += b d = (a ⊕ d) ≫ 16

c += d b = (b ⊕ c) ≫ 12

a += mj ⊕ constj

a += b d = (a ⊕ d) ≫ 8

c += d b = (b ⊕ c) ≫ 7

32 / 50

How BLAKE works (G function)

For BLAKE-64 — version with 64-bit words, 64-byte digests

a += mi ⊕ consti

a += b d = (a ⊕ d) ≫ 32

c += d b = (b ⊕ c) ≫ 25

a += mj ⊕ constj

a += b d = (a ⊕ d) ≫ 16

c += d b = (b ⊕ c) ≫ 11

33 / 50

BLAKE in software

Straightforward to implement (chain of +,⊕,≫)

Speed-up with SIMD instructions (SSE2)

On Intel Core 2 Duo (eBASH’s katana)
I BLAKE-32: 10.21 cycles/byte

with gcc -march=nocona -O -fomit-frame-pointer

I BLAKE-64: 7.04 cycles/byte
with gcc -m64 -march=K8 -O2 -fomit-frame-pointer

I vs. 15.32 (SHA-256), 11.63 (SHA-512)

268 bytes of RAM in ATmega1281 (8-bit, 8 Kb RAM)

34 / 50

BLAKE in hardware

Space/time trade-offs with 1, 2, 4, or 8 functions G

Own VHDL implementations, synthesis, chips fabrication
I BLAKE-32 in 13.5 kGE, 135 Mbps (180 nm)
I BLAKE-32 in 38 kGE, 15 Gbps (90 nm)
I BLAKE-64 in 79 kGE, 19 Gbps (90 nm)

Many third-party implementations, e.g. in FPGA
I BLAKE-32 with 56 Virtex 5 slices, 225 Mbs
I BLAKE-64 with 108 Virtex 5 slices, 314 Mbps

[Beuchat et al.]

35 / 50

SHA-3 candidates in hardware

See SHA-3 hardware evaluation project by Henzen et al.
http://www.iis.ee.ethz.ch/∼sha3/

36 / 50

Skein

Design by Niels Ferguson, Stefan
Lucks, Bruce Schneier, Doug Whiting,
Mihir Bellare, Tadayoshi Kohno, Jon
Callas, Jesse Walker

I One of the 14 round-2 candidates
I ARX (Add, Rotate, Xor) algorithm
I Only works with 64-bit words
I Based on the “Threefish” block cipher

(“Twofish” was the team’s AES candidate)

37 / 50

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

Round 0

Round 1

Round 2

Round 3

Etc.

+ first subkey

MIX MIX MIX MIX

permute

MIX MIX MIX MIX

permute

MIX MIX MIX MIX

permute

MIX MIX MIX MIX

permute

+ second subkey

· · · · · · · · · · · ·

38 / 50

Threefish’s MIX function

At round r ∈ {0,1, . . . ,71} and position s ∈ {0,1,2,3}:

MIXr ,s(x0, x1) = (y0, y1)

y0 = x0 + x1

y1 = y0 ⊕ (x1 ≪ Rr ,s)?

?

?

?

?

≪e
�

-

x0 x1

y0 y1

39 / 50

Skein’s round-2 tweak

Skein was “tweaked” for round 2
I New rotation constants in MIX optimizing diffusion
I 2-day computation with a genetic algorithm

Expected to improve resistance to differential attacks as
I Improved cryptanalysis of Skein

Asiacrypt ’09, w/ Calik, Meier, Özen, Phan, Varıcı

“It is not clear to us whether the impossible differential can
be modified for the new rotation constants.”

How is our analysis affected?

40 / 50

Impossible differentials

The miss-in-the-middle technique:

Proof by contradiction that (α→ γ) cannot occur

α
prob.1−−−→ β 6= δ

prob.1←−−− γ

In practice, β and δ are differences over a subset of the
internal state (that is, truncated differentials)

Impossible differentials were previously found for
I 8 rounds of AES-192 (of 12)
I 5 rounds of Twofish (of 16)
I 21 rounds of Threefish (of 72, round-1 version)

41 / 50

New results on the round-2 Threefish

I Probability-1 truncated differential for 14 rounds
(against 13 for the round-1 version!)

I Impossible differential for 21 rounds
(same as for the round-1!)

I More efficient linearization than for round-1 version

⇒ Unclear whether the “improved” constants are better
than the original ones. . .

Improved protecting against attack A may weaken
resistance to attack B. . .

Work in progress with Raphael Phan. . .

42 / 50

And now for something completely different. . .

43 / 50

Towards lightweight hashing
Hashing in dedicated IC’s (as RFID tags’ chips)

I Identification protocols
I Message authentication

MD5 and SHA-1 generally too big (5000+ GE)

Smallest known proposal: PRESENT-based hashes by
Bogdanov et al. (CHES 2008)

I 64-bit hash: 1600 GE
I 128-bit hash: 2330 GE

44 / 50

Our new hashes: the QUARK family

I Quark: a lightweight hash
CHES ’10, w/ Henzen, Meier, Naya-Plasencia

Design philosophy:
I Consider security as a parameter independent of the

digest length
I Do not make “light versions” of known constructions,

but use a design intrinsically “lightweight”

Lineage:
I Sponge functions
I Lightweight stream cipher Grain
I Lightweight block cipher KATAN

45 / 50

h

permutation

gf

h

permutation

gf

h

permutation

gf

h

permutation

gf

h

permutation

gf

h

permutation

gf

h

permutation

gf

internal state

NFSR YNFSR X

LFSR L

h

permutation

gf

pa
ra

lle
liz

at
io

n

de
gr

ee

46 / 50

Hardware performance of QUARK

Security Area Thr. Power [µW]
Pre 2nd Col [GE] [kbps] Mean Peak

U-QUARK 128 64 64 1379 1.47 2.44 2.96
D-QUARK 160 80 80 1702 2.27 3.10 3.95
S-QUARK 224 112 112 2296 3.13 4.35 5.53
U-QUARK×8 128 64 64 2392 11.76 4.07 4.84
D-QUARK×8 160 80 80 2819 18.18 4.76 5.80
S-QUARK×16 224 112 112 4640 50.00 8.39 9.79

vs. 5000+ GE for SHA-1

Smaller than previous lightweight hashes

Straightforward speed/confidence trade-offs by varying #rounds

47 / 50

Summary

SHA-3 will augment the SHA-2 hash standard in 2012
I Hopefully faster and more confidence-inspiring
I 14 candidates left, 4-6 finalists in Dec 2010

SHA-2 still okay for most applications
I Theoretical attack on 43 rounds (of 64)
I Insecure in prefix-MAC

Future challenges:
I Ultra lightweight hashes
I Efficient “provably secure” hashes

48 / 50

Further reading

I NIST’s Hash Competition
http://nist.gov/hash-competition

I eBACS (benchmarks of crypto implementations)
http://bench.cr.yp.to/

I The ECRYPT SHA-3 Zoo
(submission packages, latest attacks/implementations)
http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

I BLAKE’s webpage http://131002.net/blake/

I QUARK’s webpage http://131002.net/quark/

PDF of these slides available at
http://131002.net/talks.html

49 / 50

State of the hash:
SHA-3 and beyond

Jean-Philippe Aumasson

50 / 50

