State of the hash:
SHA-3 and beyond

Jean-Philippe Aumasson

NAGRA\/|SION

KKKKKKKKKKKKK

/50

Agenda

v

Background material

NIST’s SHA-3 competition

The SHA-3 candidate BLAKE
Updated cryptanalysis of Skein
On lightweight hashing (QUARK)
Conclusions

v

v

v

v

v

50

What is a crypto hash?

HASH, x. There is no definition for this
word—nobody knows what hash is.
Ambrose Bierce, The Devil’'s Dictionary

Arbitrary long string B, Short random-looking string

a.k.a.
» Modification detection codes
» Message authentication codes (when keyed)
» Cryptographers’ Swiss Army Knives

Applications of hash functions

Generation of secure keys
H(physical entropy)

Key derivation
H(salt, password)

Digital signatures
Sign(H(salt, message))

MAC’s
H(key, message)

Applications of hash functions

Passwords storage
H(salt, password)
Forensics, e.g., proofs of non-modification
H(key, evidence)
Random oracles in protocols, e.g. challenge-response
H(key, random challenge)
Construction of pseudorandom generators

H(key,nonce,1), H(key,nonce,2), . ..

50

Hash functions in standards: DSS, PKCS #1, NIST
SP 800-108 (HMAC), -56a (key derivation), -106
(randomized hashing), etc.

Hash functions are ubiquitous and thus difficult to replace
(~850 uses of MD5 in Windows [Ferguson, 2006])

Currently deployed hashes suffer weaknesses

50

Hash functions in standards: DSS, PKCS #1, NIST
SP 800-108 (HMAC), -56a (key derivation), -106
(randomized hashing), etc.

Hash functions are ubiquitous and thus difficult to replace
(~850 uses of MD5 in Windows [Ferguson, 2006])

Currently deployed hashes suffer weaknesses
= we need good hash algorithms!

Difficult to define “goodness”:

» Many different security requirements, sometimes
difficult to formalize and weigh

» Many performance metrics and platforms (HW vs
SW; speed vs. space, etc.)

Security requirements

» Collision resistance [it should be hard to. . .]
find M £ M’ s.t. HM) = HM')
» Second preimage resistance
given M find M A M s.t. HM) = HM')
» Preimage resistance
given H(M) (but not M) find M’ s.t. H(M) = H(M')

Security requirements

>

Collision resistance [it should be hard to. . .]
find M £ M’ s.t. HM) = HM')

Second preimage resistance

given M find M' £ M s.t. HM) = H(M')
Preimage resistance

given H(M) (but not M) find M’ s.t. H(M) = H(M')
Pseudorandomness

distinguish H(K, -) from a random function
Unpredictability

predict H(K, M) for unqueried M’s
Indifferentiability

find “related” sets of input/output values

Etc.

Generic methods

i.e. that work for any n-bit hash function

v

Collision: birthday search in O(2"/2)

(Second) preimage: bruteforce search in O(2")
Pseudorandomness: exhaustive search in O(2/K1)
Unpredictability: exhaustive search in O(2/K!)
Indifferentiability: depends on the relation

v

v

v

v

If a hash admits a method substantially faster than the

best generic attack then it’s “theoretically unideal”

50

An ideal hash function

9/50

SHA-2 (2002)

NSA design, 224-, 256-, 384-, or 512-bit digests

Only attacks on reduced versions, but suffers “length

”

extensions”, “fixed points”, “multicollisions”, etc.

Current NIST recommendation

10/50

SHA-1 (1995)

NSA design, 160-bit digests
Almost practical collision attacks (= 250 vs. 280 ideally)

“Federal agencies should stop using SHA-1 for digital
signatures, digital time stamping and other applications
that require collision resistance” [NIST]

11/50

MD5 (1991)

Ron Rivest design, 128-bit digests
Collisions can be found in milliseconds
Can find colliding executables, colliding public-keys, etc.

Should now be avoided

12/50

The Merkle-Damgard construction

M ge|M ge o M je| Length
block 1 | block 2 block n | padding

Length extension: can find H(M||padding||M’) given only

H(M) (application: forgery of MAC’s).

Finali-
sation

13/50

Beyond Merkle-Damgard

HAIFA [Biham-Dunkelman, 2006]
» Augmented version of Merkle-Damgard
» Counter to differentiate compression functions
» Proven “indifferentiable from a random oracle”

Sponge functions [Bertoni-Daemen-Pesters-Van Assche, 2007]
» Use a permutation rather than compression function
» Proven “indifferentiable from a random oracle”

absorbing | squeezing

14/50

NIST’'s SHA-3 competition

ler National Institus
Informat h
- ABOUT MISSION GONTACT STAFF SITE MAP

Computer Security Division

Computer Security Resource Center

CSRC HOME » SROUPS = 5T » HASH PROJECT
Cryptographic Hash Project
Crymagraphic Hash Algorithm CRYPTOGRAPHIC HASH ALGORITHM COMPETITION
Campetiion = MIST has opened a public competition to develop a new cryptographic hash
Ti e for Hash Algorithim algorithm, which conwerts a variable length message inta a short "message
Competition digest” that can be used for digital signatures, message authentication and other
Federal Register Notices applications. The competition is NIST's response to recent advances in the
Submission Requirements cryptanalysis of hash functions. The new hash algorithm will be called "SHA-3"
and will augment the hash algorithms currently specified in FIPS 180-2, Secure
Round 1 Hash Standard. Entries for the competition must be received by October 37,
NEW! Round 2 2008 The competition is announced in the Fedaral Reqister Motice published on
Hash Forum MNavernber 2, 2007; further details of the competition will be available at the
specific sites indicated in the menu on the left
Contacts
Other Links
Hash Froject Webmaster, Disclaimer Motice & Privacy Foli Last updated: duly 21, 2008
U0 NIST is an Ageney of the LS. Department of Commerce Page omated: Al 15, 2005

~ AES competition for hash functions
http://nist.gov/hash-competition

15/50

NIST’'s SHA-3 competition

» Nov 2007: SHA-3 competition announced
» Oct 2008: 64 submissions received

» Dec 2008: 51 accepted for first round

» Feb 2009: 1st SHA-3 Conference

» Jul 2009: 14 semifinalists announced

» Aug 2010: 2nd SHA-3 Conference

» end 2010: 4-6 finalists announced

» spring 2012: 3rd SHA-3 Conference

» sometime in 2012: winner announced

16/50

Formal requirements for SHA-3

v

Support digests of 224, 256, 384, and 512 bits
Support messages of at least 2%* bits

Support HMAC, randomized hashing, PRFs
Resistance to length extension

One-pass mode

v

v

v

v

“NIST expects SHA-3 to have a security strength that is at
least as good as the hash algorithms currently specified in
FIPS 1802, and that this security strength will be achieved
with significantly improved efficiency.” [NIST]

17/50

64 submissions from all around the world

From both industry, academia, and government agencies

» EADS, Gemalto, Hitachi, IBM, Intel, Microsoft,
Orange, Qualcomm, Sagem, Sony, STy, etc.

» ENS (fr), EPFL, ETHZ (ch), KU Leuven (be), METU
(tr), MIT (us), Weizmann Institute (il), etc.

» US Sandia Labs, French InfoSec Agency (DCSSI)

Great variety of designs

AES-based

ARX (Add, Rotate, Xor)

Elliptic curve-based

Parallel tree hashing (MD6)

“Provably secure” (lattices, coding theory)

v

v

v

v

v

18/50

Many candidates broken

Abacus Neil Sholer in round 1 Ind-preimage
ARIRANG Jongin Lim in round 1
AURORA Masahira Fujita in round 1 2nd preimage
Blender Colin Bradbury in round 1 callision, preimage near-collision
Chestah Drmitry Khovratovich in round 1 length-extension
CHI Phillip Hawkes in round 1
CRUNGH Jacques Patarin in round 1 length-extension
DCH David A Wilson in round 1
Dynamic SHA Xu Zjie in round 1 length-extension
Dynamic SHAZ u Zije in round 1 collision length-extension
ECOH Daniel R. L Brown in round 1 2nd preimage
Edon-R Danilo Gligoroski in round 1 preimage
EnRUPT Sean OMNeil in round 1
ESSENGE Jason Worth Martin in round 1 collision
Fog Matthieu Finiasz in round 1
HASH 2 Jason Lee not in round 1
Khichidi- M. Vidyasagar in round 1
LANE Sebastiaan Indestesge in round 1
Lesamnta Hirotaka Yoshida in round 1
LUK Ivica Mikolic in round 1 collision, 2nd preimage DRBG HMAC

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

19/50

Many candidates broken

o

Maraca Fabert J Jenkins ot in round 1
MCSSHAS Mikhail Maslennikov inround 1 2nd preimage
OB Ronald L Rivest in tound 1
WeshHash Bjom Fay in round 1 2nd preimage
NaSHA Srrile Markoveki in tound 1 callsion
NKE2D Geofirey Park ot in round 1 _:
Poric Peter Schmidi-Nielsen not in round 1 Znd-preimage
SANDstorm Rich Schroeppel in tound 1
Samal Kerern \anci in round 1 preimage
Sqal Peter Maxwell in tound 1
SHAMATA Orhun Kara in tound 1
Spectral Hash Cetin Kaya Kog in round 1
Strearash Wichal Trajnara in tound 1
SWIFFTX Daniele Micciancio in round 1
Tangle Refac Alvarez in tound 1
TIES Daniel Peazzi in tound 1 callsion
Twister Michael Gorski in round 1 preimage
Vartex Wichael Kounaris in tound 1 preimage
Wain John Washburn in round 1
Waterfall Buob Hattersley inround 1 collision
TK-Crypt Carmi Grassel ot in round 1 | |

http://ehash.iaik.tugraz.at/wiki/The _SHA-3_Zoo

20/50

The 14 round-2 candidates

Name Submitter Origin Type
BLAKE Aumasson EIEEE ARX
Blue Midnight Wish Knapskog &= ARX
CubeHash Bernstein E= ARX
ECHO Gilbert 1 AES
Fugue Jutla = AES
Groestl Knudsen —=num AES
Hamsi Kigik (1 S-box
JH Wu S-box
Keccak Daemen IIRN S-box
Luffa Watanabe 11 ® S-box
Shabal Misarsky B mix
SHAvite-3 Dunkelman = AES
SIMD Leurent il mix
Skein Schneier E=Em)\RX

21/50

Security

All round-2 candidates are yet unbroken

But some are less unbroken than others, due to
» Attacks for a large fraction of the total #rounds
» Attacks on building blocks (compression functions)
» Thin security margins

Impact of such results unclear, but reduces confidence. ..
(SHA-3 should not “look” weaker than SHA-2!)

22/50

Software benchmarks on eBASH

eBACS

ECRYPT Benchmarking of Cryptographic Systems

ECRYPT II
D0t

Measurements indexed by machine:

SHA-3 candidates || All hash finctions

ECRYPTII
General information: Tntroduction eBASH I eBASC I eBATS | supErcor Computers
How to submit new software: Hach functions Stream ciphers DH finctions Public-key encryption Public-key signatures
List of primitives measured: || SHA-3 candidates | All hash fanctions Stream ciphers DH functions Public-key encryption Public-key signatures
Stream ciphers DH functions Public-key encryption Public-key signatures

eBASH: ECRYPT Benchmarking of All Submitted Hashes

The <BASH (ECRYPT Benchmarking of All Submitted Hashes) project, part of eBACS, measures hach fanctions according to the following criteria:

* Time to hash a 0-byte message.
* Time to hash a 1-byte message
* Time to hash a 2-byte message.

o Time to hash a 4096-byte message. (OF course, longer messages are also of interest; for typical hash finctions one can reasonably extrapolate to long messages by subtracting 2048-byte fimings from

4096-byte fimings.)
* Length of the hach output.

*Time" refers to time on rel computers: time on an Intel Core 2 Quad, time on an AMD Athlon 64 X2, time on an IBM PowerPC G5 70, ete. The point of these cost measures is that they are directly visible to
the cryptographic user. eBASH tines each hash fanction on a wide variety of computers, ensuring direct comparabilty of all systems on whichever computers are ofinterest to the users

There are separate pages explaining how to submit hash functiens to eBASH, listing the hash functions already submitted to eBASH, and presenting the latest eBASH measurements

Version

This is version 2010.09.03 of the ebash hirnl web page. This web page is in the public domain

Maintained by Daniel J. Bernstein and Tanja Lange

http://bench.cr.yp.to/

23/50

Software benchmarks on eBASH
Based on the SUPERCOP toolkit (system for Unified Performance

Evaluation Related to Cryptographic Operations and Primitives)

Implementations are collected and included in the latest
SUPERCORP release

When run on your machine SUPERCOP does:

for each hash function H
for each implementation of H
for each relevant architecture (x86, amd64, etc.)
for each compiler available (gcc, icc, xlc, etc.)
for each compiler options set (from a defined set)
measure speed for various message lengths

The fastest combinations are reported on
http://bench.cr.yp.to/results-sha3.html

24/50

eBASH example

x86, 2394MHz, Intel Core 2 Quad Q6600 (6fb), 2007, latour, supercop-20101002

Cyclesfhyto for long messages

Cyclesfhyto for 4096 bytes

Cyclesiyte {

quar hash. e hash di

491[494 500]eunsiz 537 538 540fuvs1z 611 612

739[74| 758]punzse 77[776 782]puwass 826 827
570 999 1041[shewaisiz 1023 1027 1030p1aresz 1066 1067
593 1006 10 11]piaxesz 10,62 10,68 1086snapaisiz 1173 1181
1208/ 1216 1225|simazss 1245 1251 1254|[simazss 12.92| 1294/ 1
1249 12.65| 12.88||blakesd 12.14)| 12.15(1327[plakeed 12.9%| 14.02| 1
13.00[13.02 13.03[eusenasnieaz]| [14,18 14.19] 14.19][rupenasnisz| [15.01] 15.04] |
1346] 1359 1368]zindsz 1419 1422 1425[camase 1523 1528
1408 1415 14.24[Luzzazss 1246 1448 1451tuzzazss 1611 1612
e T 1591 15.93] 15.94]|1urrasss 1642 1642 16.43|1urrasss 17.25 17.26]
A S T I T 1748 1748 1751skeins1z 1812 1813
e T R o) 18.00] 18.01[skeinzss 18.26] 1827] 18.27[sreinzse 1870 1870 |
| Tz s [T971][1929 19.33keceancass 19.66] 19.69] 20.04]3m22a 2023 2029 :

oot e]

s | SR At 1893 1932 20 04[yn22e 19,68 1970 19.823ms12 2026 2029 :
[e)ms?mm #|[1908 1934 19.62[3m822 1973 1978 19.82]3m25e 20,33 2037 :
s 19.30[1941 19.563ness 19.70[1987 2005]n3ee 2031 2045 :
I M-y 1898 19.49] 20.06[3nsee 2010 20 11 20 12freccakotas 2059 2061 :
4 1959 19.70] 13.76]ruguezss 2095 2096 2036][snasiz 2229 2257 ¢
1597 1999 2001[snasiz 20,96 2096 20 96|[snazea 22 50 2254]
S oin 19.99/| 20.00| 20.03||sha3s4 2140| 2144 2151 12 2254 2254||
i %iﬂﬂ’ ‘ 20.34|| 2044 2091 |keceakes1z 2145/ 2148 21.50|fuguezse 24.16| 24.18|| =
R T = || o1 0zl 01 04l 21 90llemrnar 2078l 09 78l 29 anlleennar 24 00l o4 24l

25/50

eBASH example

Implementation notes: x86, latour, crypto_hash

Computer: latour
Architecture: x86
CPU ID: Genuinelntel-000006fb-bfebfbff

CPU cyclesfsecond: 2394000000... 2384000000 (z86cpuinfo)
SUPERCOP wersion: 20101002
Benchmark dates: 20100903...20101003

crypto_hash

. Relative — . i

Time e Primitive Implementation Compiler

16380, 1.00|lpLake32 erypto_hash/blakesz/sse2 gcc ~funroll-100ps -m3Z -marchepentiwmn -0 ~fom
- freme-pointer (4.3.3)

17964, 1.10|pLake32 erypto_hash/blakesz/ssse3 gcC 3L mArChInative -mtuneshative -02 -fomit-f
- pointer

21006] 1.28|fp1aKe32 erypro_hash/blakesz/sphlis gee no2 —oz point.

30195 184/ Lakesz crvrto_hash/blakedz/ret gcc -ma2 lona —02 ~£ami pointe

“funroll-l w32 —march=athlon -03 —fomit—

31338 1.91|blake3z crypto_hash/blake32/sphlib-small dee “Iunroll-loops w32 -marehsachlon o

- pointer
“funroll-l w32 —march=barcelona -03 —T

21555 1.00|blakesd lcrypto_hash/blakesd/sses ge¢ “Tunroll-loops w32 -warchSharcelena o
- treme-pointer (4.3.3)

25776) 1.20/fp1ake 54 crypto_hash/blakegd/sssed gcc w32 -march=corez -mssed -0 -fomit-frame-poin

74394 3.45|oLlake6d lcrypto_hash/blakes4/sphlin gcc -m3z entiumpro -0 —fomit-freme-pointe

74507 348|plakess erypto_hash/blake64/sphlib-small gcc -m32 -marchnative -moune=navive -0 —fomic-Ir
- pointer

80127 372|[oLakeca [crvpto_hash/blakes4/res Gcc w32 -march=penmtiummpro -O —fomit-frame-pointe

[crypto_hash/bmwzS6/ opr2tsssed_ammiz _
12636 100 jomuzS6 (Optirized ICC_11.1 rav ssm 32bic_— BMZSE, oprczdsssed) gcc w32 -marchtcoreZ -Os —fomit-frame-pointer (%
12915 1 02llomwzss lervpto hash/bmuzSe/ootilesses asnsz 4o w32 -march=corez -mesed -Os -fomit-frame—poi

26/50

Many open issues

How to make fair performance comparisons?
How important is each platform?

When is hash performance critical?

What'’s the impact of unexploited “vulnerabilities”?

Announcement of 4-6 finalists due in December 2010

27/50

BLAKE

Co-designed with Luca Henzen (ETHZ), Willi Meier
(FHNW), Raphael C.-W. Phan (Uni Loughborough, UK)

Our design goals:
» Be faster and more secure than SHA-2
Make the specs readable by non-experts
Allow implementation space/time trade-offs
Do not reinvent the wheel (build on previous designs)

» Bernstein’s ChaCha stream cipher
» Biham and Dunkelman’s HAIFA construction

v

v

v

28/50

How BLAKE works (compression function)

Initialize an internal state of 16 words

Vo Vi Vo Va3
Vo2 Vs Vg V7
Vg Vo Vip Viy
Vi Viz Vg Vis

Different inputs give different states

Round function: use of a bijective mapping G to transform
each column, then each diagonal

Go(vo ,va ,v8 ,v12) Gi(vy ,v5 ,% ,v13) Gao(va ,V ,Vvi0,v14) Ga(va ,v7 , Vi1, Vis5)
Ga(vo ,¥5 ,vi0,v15) Gs(vy ,ve ,vi1,vi2) Ge(va ,v7 ,vg ,vi3) Gr(va ,va , Vg , Vi4)

29/50

How BLAKE works (compression function)

Initialize an internal state of 16 words

Vo Vi
Vy Vs
Vg Vo
Vig. Vi3

Different inputs give different states

Round function: use of a bijective mapping G to transform
each column, then each diagonal

Go(vo ,va ,v8 ,vi2) Gi(vi ,v5 ,v9 ,V13)
Ga(vo ,¥5 ,vi0,v15) Gs(vy ,ve ,vi1,vi2) Ge(va ,v7 ,vg ,vi3) Gr(va ,va , Vg , Vi4)

30/50

How BLAKE works (compression function)

Initialize an internal state of 16 words

Vo Vi
Vs Ve
Vio Vi1
Vi2 Vis

Different inputs give different states

Round function: use of a bijective mapping G to transform
each column, then each diagonal

Go(vo ,va ,v8 ,v12) Gi(vy ,v5 ,% ,v13) Gao(va ,V ,Vvi0,v14) Ga(va ,v7 , Vi1, Vis5)
Gs(vo V5 ,vi0,v15) Gs(vi , Ve , Vi1, V42)

31/50

How BLAKE works (G function)

For BLAKE-32 — version with 32-bit words, 32-byte digests

a += m; @ const;
a+=b d=(ad d > 16
c += d b=(boc) > 12
a += m; @ const;
a+=>b d=(Ga®&d > 8
c +=d b=((b®c) > 7

32/50

How BLAKE works (G function)

For BLAKE-64 — version with 64-bit words, 64-byte digests

a += m; @ const;
a+=b d=(ad d > 32
c += d b=(b®c) > 25
a += m; @ const;
a+=>b d=(a®d d > 16
c += d b=((Mmoc) > 11

33/50

BLAKE in software

Straightforward to implement (chain of +, &, >>)
Speed-up with SIMD instructions (SSE2)

On Intel Core 2 Duo (eBASH’s katana)
» BLAKE-32: 10.21 cycles/byte

with gcc -march=nocona -0 -fomit-frame-pointer
» BLAKE-64: 7.04 cycles/byte
with gcc -m64 -march=K8 -02 -fomit-frame-pointer

> vs. 15.32 (SHA-256), 11.63 (SHA-512)

268 bytes of RAM in ATmega1281 (8-bit, 8 Kb RAM)

34/50

BLAKE in hardware

Space/time trade-offs with 1, 2, 4, or 8 functions G

Own VHDL implementations, synthesis, chips fabrication
» BLAKE-32 in 13.5kGE, 135Mbps (180 nm)
» BLAKE-32 in 38 kGE, 15 Gbps (90 nm)
» BLAKE-64 in 79kGE, 19 Gbps (90 nm)

Many third-party implementations, e.g. in FPGA
» BLAKE-32 with 56 Virtex 5 slices, 225 Mbs
» BLAKE-64 with 108 Virtex 5 slices, 314 Mbps
[Beuchat et al.]

35/50

SHA-3 candidates in hardware

JH Keccak Luffa Shabal SHAvite SIMD Skein

See SHA-3 hardware evaluation project by Henzen et al.
http://www.iis.ee.ethz.ch/~sha3/

36/50

Design by Niels Ferguson, Stefan
Lucks, Bruce Schneier, Doug Whiting,
Mihir Bellare, Tadayoshi Kohno, Jon
Callas, Jesse Walker

One of the 14 round-2 candidates
ARX (Add, Rotate, Xor) algorithm
Only works with 64-bit words

Based on the “Threefish” block cipher
(“Twofish” was the team’s AES candidate)

>

v

v

v

37/50

+ first subkey

| [mix | [mx | [wmix
permute

MIX

Round 0

| [mx | [MxX] [MX
permute

MIX

Round 1

| [mx | [Mx | [MX
permute

MIX

Round 2

| [mx | [Mx | [MX
permute

MIX

Round 3

+ second subkey

Etc.

38/50

Threefish’s MIX function

Atround r € {0,1,...,71} and position s € {0,1,2,3}:

MIX; s(%0, x1) = (Yo, ¥1)
Yo = Xo+ X
}/1 = yo P (X1 K Rr,s)

39/50

Skein’s round-2 tweak

Skein was “tweaked” for round 2
» New rotation constants in MIX optimizing diffusion
» 2-day computation with a genetic algorithm

Expected to improve resistance to differential attacks as

» Improved cryptanalysis of Skein
Asiacrypt’09, w/ Calik, Meier, Ozen, Phan, Varici

“It is not clear to us whether the impossible differential can
be modified for the new rotation constants.”

How is our analysis affected?

40/50

Impossible differentials

The miss-in-the-middle technique:
Proof by contradiction that (o« — +) cannot occur

b.1 b.1
o pro B # 5 pro 5

In practice, g and ¢ are differences over a subset of the
internal state (that is, truncated differentials)

Impossible differentials were previously found for
» 8 rounds of AES-192 (of 12)
» 5 rounds of Twofish (of 16)
» 21 rounds of Threefish (of 72, round-1 version)

41/50

New results on the round-2 Threefish

» Probability-1 truncated differential for 14 rounds
(against 13 for the round-1 version!)

» Impossible differential for 21 rounds
(same as for the round-1!)

» More efficient linearization than for round-1 version

= Unclear whether the “improved” constants are better
than the original ones. ..

Improved protecting against attack A may weaken
resistance to attack B...

Work in progress with Raphael Phan...

42/50

And now for something completely different. . .

43/50

Towards lightweight hashing
Hashing in dedicated IC’s (as RFID tags’ chips)

» Identification protocols
» Message authentication

MD5 and SHA-1 generally too big (5000+ GE)

Smallest known proposal: PRESENT-based hashes by
Bogdanov et al. (CHES 2008)

» 64-bit hash: 1600 GE
» 128-bit hash: 2330 GE

44/50

Our new hashes: the QUARK family

» Quark: a lightweight hash
CHES 10, w/ Henzen, Meier, Naya-Plasencia

Design philosophy:
» Consider security as a parameter independent of the
digest length

» Do not make “light versions” of known constructions,
but use a design intrinsically “lightweight”

Lineage:
» Sponge functions
» Lightweight stream cipher Grain
» Lightweight block cipher KATAN

45/50

e
%3,
%,
% %
Ory U
S 2

permutation

R —

| NFSR X |<—€9-—| NFSR Y

internal state
||| i

46/50

Hardware performance of QUARK

Security Area Thr. Power [uW]

Pre 2nd Col [GE] [kbps] Mean Peak

U-QUARK 128 64 64 1379 147 244 296
D-QUARK 160 80 80 1702 227 3.10 3.95
S-QUARK 224 112 112 2296 3.13 4.35 5.53
U-QUARKx8 128 64 64 2392 11.76 4.07 4.84
D-QUARKx8 160 80 80 2819 18.18 4.76 5.80
S-QUARKx16 224 112 112 4640 50.00 8.39 9.79

vs. 5000+ GE for SHA-1

Smaller than previous lightweight hashes

Straightforward speed/confidence trade-offs by varying #rounds

47/50

Summary

SHA-3 will augment the SHA-2 hash standard in 2012
» Hopefully faster and more confidence-inspiring
» 14 candidates left, 4-6 finalists in Dec 2010

SHA-2 still okay for most applications
» Theoretical attack on 43 rounds (of 64)
» Insecure in prefix-MAC

Future challenges:
» Ultra lightweight hashes
» Efficient “provably secure” hashes

48/50

Further reading

» NIST’s Hash Competition
http://nist.gov/hash-competition

» eBACS (benchmarks of crypto implementations)
http://bench.cr.yp.to/

» The ECRYPT SHA-3 Zoo
(submission packages, latest attacks/implementations)
http://ehash.iaik.tugraz.at/wiki/The SHA-3_Zoo

» BLAKE'’s webpage http://131002.net/blake/
» QUARK’s webpage http://131002.net/quark/

PDF of these slides available at
http://131002.net/talks.html

49/50

State of the hash:
SHA-3 and beyond

Jean-Philippe Aumasson

NAGRA\/|SION

KKKKKKKKKKKKK

50/50

