Attacking KLEIN

J.-Ph. Aumasson, María Naya-Plasencia, Markku-Juhani O. Saarinen

Presented at INDOCRYPT 2011 (December)

KLEIN: RFIDSec 2011 (June)

() rfid-cusp.org/rfidsec/program.php

10:10–10:35 AM Coffee and Tea Break

Technical Session 1: On-Tag Cryptography (Session chair: Farinaz Koushanfar)

KLEIN: A New Family of Lightweight Block Ciphers Authors: Zheng Gong, Svetla Nikova and Yee Wei Law Affiliations: School of Computer Science, South China Normal University, China and Faculty of EWI, University of Twente, The Netherlands and Department of EEE, The University of Melbourne, Australia Low-RAM on small MCUs

~2000 GE on 180 nm ASIC

Reasonable speed

Simple and elegant design

=> How secure is it?

64-bit block

64-bit key -> 12 rounds

80-bit key -> 16 rounds

96-bit key -> 20 rounds

Interaction between:

Nibble-oriented S-box

Byte-oriented MixColumn

Observation 1

X \in {1,2,...,7} [i.e. nibble with null MSB]

MixColumn(m) \oplus MixColumn(m \oplus 0000000X)

= 0Y0Y0Y0Y

Where Y is a wildcard for nibbles \in {1,2,...,F}

Observation 2

X wildcard for nibbles $in \{1, 2, ..., 7\}$

MixColumn(m) \oplus MixColumn(m \oplus 0X0X0X0X)

= 0Y0Y0Y0Y

Where Y is a wildcard for nibbles \in {0,1,...,F}

Observation 3

X **wildcard** for nibbles \in {8,9,...,F}

MixColumn(m) \bigoplus MixColumn(m \bigoplus 0X0X0X0X)

= 0Y0Y0Y0Y

Where Y is a wildcard for nibbles \in {0,1,...,F}

Observation 4

X \in {1,2,...,F}

Prob[Sbox(m) \oplus Sbox(m $\oplus \times$)] \in {1,2,...,8}

If X \in {B,E}, Prob = 3/4

Key idea

Ensure that differences entering MixColumn are all either in {0,1,..,7} or in {8,9,...,F}, so that its output only has differences in lower nibbles

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	$2^{-0.42}$
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

Black squares = actives nibbles

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	$2^{-0.42}$
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

Distinguisher on 6 rounds in ~2^28

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

Distinguisher on 6 rounds in ~2^28 Transform to key-recovery on 7 rounds

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

Transform to key-recovery on 7 rounds

Message modification => 2^23 for an extra pair

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2-28.08
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

Message modification => 2^23 for an extra pair Find 6 pairs in <2^29, enough to find 32b subkey

1	SubNibbles RotateNibbles MixNibbles	$p_1 \approx 2^{-0.42}$	$2^{-0.42}$
2	SubNibbles RotateNibbles MixNibbles	$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles	$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles	$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles	$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles	$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles	$p_7 \approx 2^{-5.82}$	2 ^{-33.90}

Find 6 pairs in <2^29, enough to find 32b subkey Repeat for the other 32b half

1	SubNibbles RotateNibbles MixNibbles	$\begin{array}{c} \square \\ \square \\ \square \\ \square \end{array} p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles	$ \begin{array}{c} \square \\ \square \\ \blacksquare \end{array} p_2 \approx 2^{-4.40} \\ \square \\ \blacksquare \end{array} $	2-4.82
3	SubNibbles RotateNibbles MixNibbles	$ \square \qquad p_3 \approx 2^{-5.82} $	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles	$ \square \qquad p_4 \approx 2^{-5.82} $	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles	$ \square \qquad p_5 \approx 2^{-5.82} $	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles	$ \Box = p_6 \approx 2^{-5.82} $	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles	$ \begin{array}{c} \square \\ \square \\ \square \end{array} p_7 \approx 2^{-5.82} \\ \square \end{array} $	2-33.90

7 round distinguisher? 33.90 > 32... Filter by checking ability to message-modify a pair

1	SubNibbles RotateNibbles MixNibbles	$\begin{array}{c} \square \\ \square \\ \square \\ \square \end{array} p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles	$ \begin{array}{c} \square \\ \square \\ \blacksquare \end{array} p_2 \approx 2^{-4.40} \\ \square \\ \blacksquare \end{array} $	2-4.82
3	SubNibbles RotateNibbles MixNibbles	$ \square \qquad p_3 \approx 2^{-5.82} $	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles	$ \square \qquad p_4 \approx 2^{-5.82} $	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles	$ \square \qquad p_5 \approx 2^{-5.82} $	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles	$ \Box = p_6 \approx 2^{-5.82} $	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles	$ \begin{array}{c} \square \\ \square \\ \square \end{array} p_7 \approx 2^{-5.82} \\ \square \end{array} $	2-33.90

7 round distinguisher? 33.90 > 32... Filter by checking ability to message-modify a pair

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2 ^{-33.90}

7 round distinguisher? 33.90 > 32... If trail followed, an extra pair costs ~2^28

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

A good pair can be identified in ~2^34 encryptions Find 32b half subkey that gives inactive higher nibbles

1	SubNibbles RotateNibbles MixNibbles		$p_1 \approx 2^{-0.42}$	2 ^{-0.42}
2	SubNibbles RotateNibbles MixNibbles		$p_2 \approx 2^{-4.40}$	2-4.82
3	SubNibbles RotateNibbles MixNibbles		$p_3 \approx 2^{-5.82}$	2 ^{-10.64}
4	SubNibbles RotateNibbles MixNibbles		$p_4 \approx 2^{-5.82}$	2 ^{-16.45}
5	SubNibbles RotateNibbles MixNibbles		$p_5 \approx 2^{-5.82}$	2 ^{-22.27}
6	SubNibbles RotateNibbles MixNibbles		$p_6 \approx 2^{-5.82}$	2 ^{-28.08}
7	SubNibbles RotateNibbles MixNibbles		$p_7 \approx 2^{-5.82}$	2-33.90

Repeat for the other half of the last subkey

=> Recover the full 64b key in <2^35 encryptions

8-round key recovery

<2^35 for 64b key (12 rounds in total)

<2^51 for 80b key (16 rounds in total)

<2^67 for 96b key (20 rounds in total)

```
$ ./attack 8
test vector ok
soundness ok
Pair found in 2^28.21: fb5248c1a424ca3e
Pair found in 2^26.43: 00b848c1a424882f
Pair found in 2^28.54: 180b48c1a4245a09
Pair found in 2^26.78: 1ee948c1a4246b1d
Pair found in 2^25.81: 226848c1a424362e
Pair found in 2^27.56: 2e3548c1a424f161
Subkey lower nibbles recovered:
d42c
d515
Actual subkey lower nibbles:
d42c d515
1344 seconds elapsed
```

Extend to 9 rounds? (work in progress with Y. Sasaki)

Prepend a round here

SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	

Guess 16 subkey bits of first subkey Success ⇔ good post-SubNibbles difference

SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	

Correct guess + correct pair => 1st round passed Use structure to reduce data cplexity

SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	

After 1st round, same attack as on 8 rounds, without message modification (filtering still possible) *To be verified...*

SubNibbles RotateNibbles MixNibbles	
SubNibbles RotateNibbles MixNibbles	
0.137111	
SubNibbles RotateNibbles MixNibbles	

8-round attacks claimed at INSCRYPT 2011 Similar first-round trick Unverified probabilities

INSCRYPT 2011 In Cooperation with IACR Nov. 30 - Dec. 3, 2011, Beijing

•••	Feng	and F-FCSR-H v3
48	Nan Li, Yi Mu and Willy Susilo	Efficient Self-Certified Signatures with Batch Verification
49 J:	Jiang Zhang, Xiang Xie, Rui Zhang and Zhenfeng Zhang	A Generic Construction from Selective-IBE to Public-Key Encryption with Non-
		interactive Opening
53	Xusheng Zhang, Shan Chen and Dongdai Lin	Fast Tate Pairing Computation on Twisted Jacobi Intersections Curves
54	Shao-Zhen Chen and Yi-Bin Dai	Weak-Key Class of MISTY1 for Related-Key Differential Attack
55	Xiaoli Yu, Wenling Wu, Yanjun Li and Lei Zhang	Cryptanalysis of Reduced-Round KLEIN Block Cipher

TODO

- Analyze/implement 9-round attack
- What about hashing modes (DM etc.)?
- 10+ rounds can probably be attacked in <2^64