
PHC: status quo
JP Aumasson

academic background

principal cryptographer at Kudelski Security, .ch

applied crypto research and outreach

BLAKE, BLAKE2, SipHash, NORX
Crypto Coding Standard
Password Hashing Competition
Open Crypto Audit Project board member

@veorq / http://aumasson.jp

do you use passwords?

this talk might interest you!

Oct 2013

"hash" = 3DES-ECB(static key, password)
users' hint made the guess game easy...

(credit Jeremi Gosney / Stricture Group)

May 2014; "encrypted passwords" (?)

last week

that's only the reported/published cases

Lesson
if Adobe, eBay, and Avast fail to protect their

users' passwords, what about others?

 users using "weak passwords"?

ITsec people using "weak defenses"?

developers using "weak hashes"?

cryptographers, who never bothered?

agenda

1. how (not) to protect passwords
2. the Password Hashing Competition (PHC)
3. the 24-2 PHC candidates
4. next steps, and how to contribute

WARNING
this is NOT about bikeshed topics as:

password policies
password managers

password-strength meters
will-technology-X-replace-passwords?

1. how (not) to protect passwords

solution of the 60's

store "password"

or the modern alternative:

obviously a bad idea
(assuming the server and its DB are compromised)

solution of the early 70's

store hash("password")

"one-way": can't be efficiently inverted

vulnerable to:
● efficient dictionary attacks and bruteforce
● time-memory tradeoffs (rainbow tables, etc.)

solution of the late 70's

store hash("password", salt)

"one-way": can't be efficiently inverted
immune to time-memory tradeoffs

vulnerable to:
● dictionary attacks and bruteforce

(but has to be repeated for different hashes)

solution of the 2000's

store hash("password", salt, cost)

"one-way": can't be efficiently inverted
immune to time-memory tradeoffs
inefficient dictionary attacks and bruteforce

main ideas:
● be "slow"
● especially on attackers' hardware (GPU, FPGA)

=> exploit fast CPU memory access/writes

NIST and PKCS standard

in Truecrypt, iOS, etc. (often for client key derivation)

iteration of a PRF, typically HMAC-SHA1

cons: no attempt to minimize attackers'
advantage, thus maximizing server's slowdown
for a given security level

PBKDF2 (Kaliski, 2000)

bcrypt (Provos/Mazières, 1999)

"4KB of constantly accessed and modified memory"

in OpenBSD, Twitter, etc.

mitigates GPUs and FPGAs efficiency

cons:
● memory requirement cannot be tuned
● multiple instances fit in FPGAs’
● not parallelizable

(defenders cannot exploit SIMD or multicores)

scrypt (Percival, 2009)

both time and space can be parametrized

more flexible than bcrypt

cons:
● “overdesigned”

(uses PBKDF2, HMAC, SHA-256, Salsa20)
● suboptimal against GPUs and TMTOs
● cannot increase only time (not memory)

scrypt (Percival, 2009)

parameters N and r have similar effect

X-axis: log(N), Y-axis: log(r)
bluer: faster, from 0.1ms to 2s

2. the Password Hashing Competition

another crypto competition
(cf. AES, eSTREAM, SHA-3, CAESAR)

try to survive and break the others

Tony Arcieri (@bascule, Square)
Jean-Philippe Aumasson (@veorq, Kudelski Security)

Dmitry Chestnykh (@dchest, Coding Robots)
Jeremi Gosney (@jmgosney, Stricture Consulting Group)

Russell Graves (@bitweasil, Cryptohaze)
Matthew Green (@matthew_d_green, Johns Hopkins University)

Peter Gutmann (University of Auckland)
Pascal Junod (@cryptopathe, HEIG-VD)

Poul-Henning Kamp (FreeBSD)
Stefan Lucks (Bauhaus-Universität Weimar)

Samuel Neves (@sevenps, University of Coimbra)
Colin Percival (@cperciva, Tarsnap)

Alexander Peslyak (@solardiz, Openwall)
Marsh Ray (@marshray, Microsoft)

Jens Steube (@hashcat, Hashcat project)
Steve Thomas (@Sc00bzT, TobTu)

Meltem Sonmez Turan (NIST)
Zooko Wilcox-O'Hearn (@zooko, Least Authority Enterprises)

Christian Winnerlein (@codesinchaos, LMU Munich)
Elias Yarrkov (@yarrkov)

Timeline

2013 Q1 call for submissions
2014 March 31 submission deadline
2014 Q3 selection of finalists
2015 Q2 selection of one or more winners

https://password-hashing.net

https://password-hashing.net/wiki

discussions@password-hashing.net

#phc @freenode

3. the 24-2 PHC candidates

submissions requirements

specs, reference code, test vectors
salt, time and memory parameters

IP statement: no patent, royalty-free

Antcrypt (Duermuth, Zimmerman)

● uses SHA-512
● floating-point arithmetic (pros and cons)
● separation crypto- and compute-hardness
● clear and well-motivated design

Argon (Biryukov, Khovratovich)

● uses AES-128 (thus NIs on defenders' CPUs)
● up to 32x parallelism, optional secret key
● supports server relief and hash upgrade
● thorough security analysis

battcrypt (Thomas)

● Blowfish All The Things, and SHA-512
● suited for PHP (has a native Blowfish)
● supports server relief and hash upgrade
● elegant and minimalistic design

Catena (Forler, Lucks, Wenzel)

● uses BLAKE2b (thus SIMD on defenders' CPUs)
● graph-based structure, optional secret key
● supports server relief and hash upgrade
● thorough security analysis, and "proofs"

Catfish

Centrifuge (Alvarez)

● uses AES-256-CFB and SHA-512
● benefits of AES-NI on defenders' CPUs
● password- and salt-dependent "S-box"
● RC4-like byte pseudorandom byte swap

EARWORM (Franke)

● uses AES round and PBKDF2-HMAC-SHA-256
● local ROM table (“arena”)
● not 2nd-preimage resistant (HMAC’s H(key)...)
● analysis wrt network timing attacks

Gambit (Pintér)

● uses Keccak[1600] (sponge function)
● optional local ROM table
● customizable word-to-word transform

advertisement

Lanarea (Mubarak)

● uses BLAKE2b
● “heavily serial operations” (no //ism)
● “nonuniform section timings” (no pipelining)
● supports hash upgrade

Lyra2 (Simplicio Jr, Almeida, Andrade, dos Santos, Barreto)

● uses BLAKE2b (permut.) in a duplex sponge
● 2-dimensional memory parameter
● “basil” personalization string
● thorough security analysis

m3lcrypt

Makwa (Pornin)

● uses bignum arithmetic (modular squarings)
● uses HMAC_DRBG
● supports delegation to untrusted systems
● supports password escrow, hash upgrade

MCS_PHS (Maslennikov)

● uses PBKDF2 with MCS_SHA8
● from the MCSSHA* SHA-3 submission…
● simple algorithm: a tweaked PBKDF2

Omega Crypt (Enright)

● uses ChaCha and CubeHash (SIMD-friendly)
● data-dependent branchings…
● … yet timing attack mitigation

Parallel (Thomas)

● uses SHA-512
● 2-dimension time cost: sequential & parallel
● constant (low) memory
● minimalistic and compact design

is PHC worthless? :-)

/

PolyPassHash (Cappos, Arias)

● uses AES, SHA-256, SSS
● threshold of pwds needed to unlock the DB
● only appropriate when many users

POMELO (Wu)

● no external primitive (fully original algorithm)
● simple FSR-like update functions
● partial mitigation of cache-timing attacks
● compact self-contained implementations

Pufferfish (Gosney)

● uses Blowfish, HMAC-SHA-512
● tweaked Blowfish (pwd-dependent S-boxes, etc.)
● a “modern” bcrypt (64-bit, variable memory)
● JTR patches available

RIG (Chang, Jati, Mishra, Sanadhya)

● uses BLAKE2b
● bit-reversal permutation
● mitigation of cache-timing leaks
● supports server relief and hash upgrade

Schvrch (Vuckovac)

● no external primitive (fully original algorithm)
● separate “slow” and “big” computations
● extra “round” parameter for more slow down

Tortuga (Sch)

● uses Turtle (Blaze, 1996) as permutation
● keyed sponge structure (absorb/squeeze)
● original and simple construction

TwoCats (Cox)

● uses BLAKE2s | BLAKE2b | SHA-256 | SHA-512
● uses integer multiplications (fast on CPUs)
● tweakable thread- and instruction-level //ism
● supports server relief and hash upgrade

Yarn (Capun)

● uses AES round and BLAKE2b
● parallelism parameterizable
● 3 “time” parameters for distinct resources
● simple and compact design

yescrypt (Peslyak a.k.a. Solar Designer)

● uses scrypt with optional tweaks (via bit flags)
● optional: local ROM, Salsa20 replacement
● more parallelism options (thread and inst. level)
● supports server relief

4. next steps, and how to contribute

in Q3 2014, we’ll select the finalists
(probably between 5 and 10)

in Q2 2015, we’ll select the winners,
expected to become de facto standards

some panel members submitted:
we’ll avoid conflicts of interest

evaluation criteria
security (pseudorandomness, etc.)
efficiency ratio (e.g. CPU vs GPU)

simplicity (#LoCs, dependencies, etc.)
extra functionalities
target application

etc.

transparency
we’ll try to have public discussions as

much as possible

a final report will be published,
justifying our choices

we need
reviews of the implementations

https://github.com/bsdphk/PHC/

third-party implementations
(to check consistency with the specs, etc.)

cryptanalysis
(memory bypass, side-channel attacks, etc.)

 any comment or suggestion to improve

https://github.com/bsdphk/PHC/
https://github.com/bsdphk/PHC/

Thank you!

