PHC: status quo

JP Aumasson

KUDELSKI
SECURITY ‘&

@veorq / http://aumasson.jp

academic background
principal cryptographer at Kudelski Security, .ch
applied crypto research and outreach

BLAKE, BLAKEZ2, SipHash, NORX
Crypto Coding Standard

Password Hashing Competition

Open Crypto Audit Project board member

do you use passwords?

this talk might interest you!

Oct 2013

C f www.theguardian.com

technology Did your Adobe password leak?
Now you and 150m others can
check

Alex Hern

@ 25 comments

"hash" = 3DES-ECB(static key, password)
users' hint made the guess game easy...

Top 100 Adobe Passwords with Count

We do not (yet) have the keys Adobe used to encrypt the passwords of 130,324,429 users affected by
their most recent breach. However, thanks to Adobe choosing symmetric key encryption over hashing,
selecting ECB mode, and using the same key for every password, combined with a large number of
known plaintexts and the generosity of users who flat-out gave us their password in their password
hint, this is not preventing us from presenting you with this list of the top 100 passwords
selected by Adobe users.

While we are fairly confident in the accuracy of this list, we have no way to actually verify it
right now. We don't have the keys, and Adobe is not letting any of the affected accounts log in

until the owners reset their passwords. So,

emptor and such.

1911938
446162
345834
211659
201580
130832
124253
113884

83411
82694

Ciphertext

EQ7fIpT71i/Q=
j9p+HwtWWT86aMjgZFLzYg==
L8qbAD3j13jioxG6CatHBw==
BB4e6X+b2xLioxG6CatHBw==
J9p+HWtWWT/10xG6CatHBw==
5djv7ZCI2ws=
dQifasWPYvQ=
7LgYzKVeq8I=
PMDTbPOLZxu®3SwrFUVYGA==
e6MPXQ5G6a8=

it is possible there is an error or two in here. Caveat

Plaintext

123456
123456789
password
adobe123
12345678
qwerty
1234567
111111
photoshop
123123

(credit Jeremi Gosney / Stricture Group)

May 2014, "encrypted passwords” (?)

b | [www.cnet.com/news/ebay-hacked-requests-all-users-change-passwords

C‘net Search CNET Q Reviews News Video

eBay hacked, requests all users
change passwords

eBay confirms users' passwords were compromised but says there's no
evidence any financial information was accessed.

by Don Relsinger W @donreisinger / May 21, 2014 5:30 AM PDT

Quor/ @ ax/ €2/ @ eotc/ &

last week

C 7 www.techworm.net/2014/0"

Avast Anti Virus Forum hacked, Login
Credentials of 400,000 users compromised

244 12 75 16K 1

oday confirmed that it took its Community support forum offline

’hich may have affected log in ids and passwords of more than

.

Company's CEO Vincent Steckler today stated in a blog post that user's nicknames, user
names, email addresses and hashed passwords were compromised in a attack on Avast
Forum which took place over this past weekend. Steckler also noted in the same blog,
that although the passwords are hashed but it could be possible for a sophisticated
thief / progammer to derive these passwords.

that's only the reported/published cases

Lesson

If Adobe, eBay, and Avast fail to protect their
users' passwords, what about others?

BLAME GAME

| didn't say it was your fault. | said | was going to blame you.

users using "weak passwords"?

ITsec people using "weak defenses"?

developers using "weak hashes"?

cryptographers, who never bothered?

agenda

B =

how (not) to protect passwords

the Password Hashing Competition (PHC)
the 24-2 PHC candidates

next steps, and how to contribute

WARNING
this is NOT about bikeshed topics as:

password policies
password managers
password-strength meters
will-technology-X-replace-passwords?

1. how (not) to protect passwords

solution of the 60's

store

or the modern alternative:

sresult = mysql query(
"SELECT * FROM users " .

" WHERE SHAI (username)
" AND SHAI (password)

UEST ["username"] . "') " .
OUES ’ﬁ[l'ras: 7 Ij"} : "l)");

obviously a bad idea
(assuming the server and its DB are compromised)

solution of the early 70's

store
"one-way": can't be efficiently inverted

vulnerable to:

e efficient dictionary attacks and bruteforce
e time-memory tradeoffs (rainbow tables, etc.)

solution of the late 70's

store

"one-way": can't be efficiently inverted
Immune to time-memory tradeoffs

vulnerable to:

e dictionary attacks and bruteforce
(but has to be repeated for different hashes)

solution of the 2000's

store

"one-way": can't be efficiently inverted
Immune to time-memory tradeoffs
inefficient dictionary attacks and bruteforce

main ideas:

e be "slow"
e especially on attackers' hardware (GPU, FPGA)
=> exploit fast CPU memory access/writes

PBKDF2 (Kaliski, 2000)

NIST and PKCS standard
in Truecrypt, iIOS, etc. (often for client key derivation)
iteration of a PRF, typically HMAC-SHA1

cons: no attempt to minimize attackers'
advantage, thus maximizing server's slowdown
for a given security level

bcrypt (Provos/Maziéres, 1999)

"4KB of constantly accessed and modified memory'

iIn OpenBSD, Twitter, etc.
mitigates GPUs and FPGAs efficiency

cons.

e memory requirement cannot be tuned
e multiple instances fit in FPGAS’

e not parallelizable
(defenders cannot exploit SIMD or multicores)

scrypt (Percival, 2009)

both time and space can be parametrized
more flexible than bcrypt

cons.

e “overdesigned”
(uses PBKDF2, HMAC, SHA-256, Salsa20)

e suboptimal against GPUs and TMTOs
e cannot increase only time (not memory)

scrypt (Percival, 2009)

parameters N and r have similar effect

X-axis: log(N), Y-axis: log(r)
bluer: faster, from 0.1ms to 2s

2. the Password Hashing Competition

another crypto competition
(cf. AES, eSTREAM, SHA-3, CAESAR)

try to survive and break the others

=i T
= A T L
BRI P o

Tony Arcieri (@bascule, Square)
Jean-Philippe Aumasson (@veorq, Kudelski Security)
Dmitry Chestnykh (@dchest, Coding Robots)

Jeremi Gosney (@jmgosney, Stricture Consulting Group)
Russell Graves (@bitweasil, Cryptohaze)

Matthew Green (@matthew _d_green, Johns Hopkins University)
Peter Gutmann (University of Auckland)

Pascal Junod (@cryptopathe, HEIG-VD)
Poul-Henning Kamp (FreeBSD)

Stefan Lucks (Bauhaus-Universitat Weimar)

Samuel Neves (@sevenps, University of Coimbra)
Colin Percival (@cperciva, Tarsnap)

Alexander Peslyak (@solardiz, Openwall)

Marsh Ray (@marshray, Microsoft)

Jens Steube (@hashcat, Hashcat project)

Steve Thomas (@Sc00bzT, TobTu)

Meltem Sonmez Turan (NIST)

Zooko Wilcox-O'Hearn (@zooko, Least Authority Enterprises)
Christian Winnerlein (@codesinchaos, LMU Munich)
Elias Yarrkov (@yarrkov)

20°
20°
20°
20°

Timeline

3 Q1 call for submissions

4 March 31 submission deadline

4 Q3 selection of finalists

5 Q2 selection of one or more winners

https://password-hashing.net
https://password-hashing.net/wiki
discussions@password-hashing.net

#phc @freenode

3. the 24-2 PHC candidates

submissions requirements

specs, reference code, test vectors
salt, time and memory parameters
IP statement: no patent, royalty-free

Antcrypt (Duermuth, Zimmerman)

uses SHA-512

floating-point arithmetic (pros and cons)
separation crypto- and compute-hardness
clear and well-motivated design

Algorithm 1 Pseudocode of AntCrypt
Require: t_cost > 0, m_cost > (, outlen > 0, salt, pw,
Ensure: key
1: init(salt, pw) {Initialize state}

2: for i = 0 to outer_rounds do
3: update_entropy() {Distribute entropy over the state}
5

The following loop is referred to as update_state()

for j = 0 to inner_rounds do
6: int_update_state() {Waste time operating on state}
7: end for
8: end for

9: compute_output() {Final output transformation}

Argon (Biryukov, Khovratovich)

uses AES-128 (thus Nis on defenders' CPUs)
up to 32x parallelism, optional secret key
supports server relief and hash upgrade
thorough security analysis

m_cost

10 100 10 10 10° 10°
Memory used 1 KB || I0KB | 100 KB || 1 MB | 10 MB || 100 MB | 1 GB

Minimal _cost | 251 | 236 | 56 | 3 | 3 | 3 | 3
If

128
then the adversary is recommended to spend the memory entirely to store the permutations pro-
duced by ShuffleSlices. For g = [!24=9 () <] < L, he gets the penalty about (Eq. (6.2))

128

3 < L

_2.6-8(n/32)L

Pl) = 1.5L+25

battcrypt (thomas)

Blowfish All The Things, and SHA-512
suited for PHP (has a native Blowfish)
supports server relief and hash upgrade
elegant and minimalistic design

// Initialize mem

for 1 = 0 to mem_size - 1
data = blowfish_encrypt_cbc(data)
mem[1] = data

data = blowfish_encrypt_cbc(data)

// Work
for 1 = 0 to t_cost_main - 1
for j = 0 to mem_size - 1
r = last64Bits_bigEndian(data) & (mem_size - 1)

mem[j] = blowfish_encrypt_cbc(data A" mem[j] A mem[r])
data = data N mem[]j]

Catena (Forler, Lucks, Wenzel)

uses BLAKEZ2b (thus SIMD on defenders' CPUs)
graph-based structure, optional secret key
supports server relief and hash upgrade
thorough security analysis, and "proofs”

Catfish

Centrifuge (Avarez)

uses AES-256-CFB and SHA-512

benefits of AES-NI on defenders' CPUs
password- and salt-dependent "S-box™
RC4-like byte pseudorandom byte swap

C(Seq,Seq,p_time); // generate sequence

for(uint64_t j=0; j<p_time; j++) { // modify S
m = (uint8_t) j % 256;

L = Seq[j];

t = S[m];
S[m] = S[1];
S[1] = t;

EARWORM (Franke)

uses AES round and PBKDF2-HMAC-SHA-256
local ROM table ("arena”)

not 2nd-preimage resistant (HMAC’s H(key)...)
analysis wrt network timing attacks

for d from 0 to D/2 —1 do

for [from 0 to L —1 do

for w from 0 to W — 1 do
scratchpad[w] +
AESRouUND(arena[index_al|l][w], scratchpad|w])

end for
end for
index_a < BE128DEC(scratchpad[0]) mod 2™-°%
for [from 0 to L — 1 do
for w from 0 to W — 1 do
scratchpad[w]
AESRouUND(arena(index b|[l][w], scratchpad|w])

t

Gambit (pinter)

e uses Keccak[1600] (sponge function)
e optional local ROM table
e customizable word-to-word transform

function Gambit (pwd, salt, t, m, dkid) returns key is
S.Init
Mem([0..m-1] := 0
S.Absorb salt || pwd || pad
loop i in 0 .. t-1
R := S.Squeeze
loop j in 0 .. r-1

Mem[i*r + j] ~= Trans(R[J])

]
W[j] := (Mem[(i*r + j) * f] ~
end loop
S.Absorb W
end loop

// save S here
S.AbsorbOvr dkid
key := S.Squeeze

advertisement

Next conference:
Passwords14 Las Vegas

Tuscany Suites & Casino
August 5 & 6, 2014

WYY WY
AYRT YN RN

Home Venue Call For Papers Call for Sponsors Call for Donors

Passwords14 Las Vegas CFP Now Open!

August 5 & 6, Tuscany Suites & Casino, Las Vegas

#passwordsl4

A hacker conference that’s all about passwords, PIN codes, and digital
authentication. n Per Thorsheim 1h

@thorsheim
- and must be ready for

Passwords are the most prevalent form of authentication in the digital age, and 3

are the first line of defense against unauthorized access in most systems. Even
if you are using some other form of authentication for a particular service,
there’s still a password in the chain somewhere — it all comes back to relying f@g) /' Fenton

Expand

Lanarea (Mubarak)

uses BLAKE2b

“heavily serial operations” (no //ism)
“nonuniform section timings” (no pipelining)
supports hash upgrade

r «— (y + h;) mod m

c «— (r + f,,)modm

r «— (r + f,,) mod m
¢ fo
if (cmod2)=0 then
¢ «— ROL (c, r)
else
¢ «— ROR(c, r)
end if
if (cmod4) =0 then
fyz < (fy- + h:) mod 256

Lyra2 (Simplicio Jr, Almeida, Andrade, dos Santos, Barreto)

uses BLAKE2b (permut.) in @ duplex sponge
2-dimensional memory parameter

“basil” personalization string

thorough security analysis

absorbing 1 squeezing

Makwa Gelnlly)

uses bignum arithmetic (modular squarings)
uses HMAC DRBG

supports delegation to untrusted systems
supports password escrow, hash upgrade

00| padding (hashed ?) password

e

many squarings
modulo n

primary output (integer modulo n)

MCS_PHS (Maslennikov)

e uses PBKDF2 with MCS SHAS8
e from the MCSSHA* SHA-3 submission...
e simple algorithm: a tweaked PBKDF2

HERBRRBBRBH BB R BB HRHHH#HE test MCS_PSW speed #H#H#HHHRHBHRBHHBBRHHBRIS
#H###RH#H#H#H#HE password length = 8, test numbers = 100000 ####H######

HRERBHRHR B R AR AR H S H#A##E Time = 29.250000 sec. RHBRBRABABBRBRBRRBRAHRR

RERBHRBRBR AR B R B R B R R #H#E test MCS_PSW speed #H##HHAHRHRBHAHBHRHRERE

##E#H#H#H### password length = 64, test numbers = 100000 ##########

HRERBHRBR R AR AR B H#H#H##E Time = 29.530001 sec. HREBRABABARRRBRBRAHEREHRS

Omega Crypt Enright)

e uses ChaCha and CubeHash (SIMD-friendly)
e data-dependent branchings...
e ... yet timing attack mitigation

9 b:if B==0 do:
Set TAD_ a to 4-bytes of ChaCha8 & A_m
Set TVAL_a to 8-bytes of ChaCha8
A[TAD a]+=R
RA=TVAL a

9 c:if B==1do:
Set TAD a to (4-bytes of ChaCha8 XOR 0x0a1b2c3d) & A m
Set TVAL_a to 8-bytes of ChaCha8
A[TAD a]*=R
R +=TVAL a

Parallel (Thomas)

uses SHA-512

2-dimension time cost: sequential & parallel
constant (low) memory

minimalistic and compact design

// Work

for 1 = 0 to t_cost_sequential - 1
// Clear work
work = zeros (64)

for Jj = 0 to t cost_ parallel
work = work ”~ SHA512(BIG_ENDIAN 64 (i) || BIG_ENDIAN 64(j) || key)

// Finish
key = SHAS512 (SHA512 (work || key))
key = truncate(key, outlen) || zeros(64 - outlen)

return truncate(key, outlen)

is PHC worthless? :-)

[Cryptography] client certificates ... as opposed to password hashing

John Denker jsd at av8n.com
Mon May 26 19:14:49 EDT 2014

Imagine a far—away culture where there is a recent fad
that involves putting lipstick on pigs. This is a hard
thing to do. Lots of things can go wrong.

More recently, somebody decided to have a contest to find

the absolutely optimal way of doing it. A bunch of smart

people took it as a challenge. They discussed 1t at great
length. They even organized a pig—-makeup /contest/ to see
who was the smartest of them all.

Then one day one of the children asked, why are you trying
so hard to optimize something that you shouldn't be doing
at all?

PonPassHash (Cappos, Arias)

e uses AES, SHA-256, SSS
e threshold of pwds needed to unlock the DB
e only appropriate when many users

On Disk 'In Memory
stored data Threshold accounts

Section 5.1
E} [[shami2)] @ [nisaitrpass)
17
Shamir
Secr et
Shar

Thresholdless accounts
Section 5.2.1

. m ar:nr t te(;|;’{e1
1 A, (K], [eatpass)
|:] ';}AESENC(,)

On Disk yIn Memory

POMELO (wu)

no external primitive (fully original algorithm)
simple FSR-like update functions

partial mitigation of cache-timing attacks
compact self-contained implementations

State update function F(S5,7) :

Ll = (z - 1) mod (state_size/8);
mod (state_size/8);

mod (state_size/8);
mod (state SlZ(/8>

Pufferfish (Gosney)

uses Blowfish, HMAC-SHA-512

tweaked Blowfish (pwd-dependent S-boxes, etc.)
a “‘modern” bcrypt (64-bit, variable memory)
JTR patches available

function pufferfish (pwd, salt, t cost, m cost, outlen)
sbox words € 2(mcost +5)
salt hash € sha512 (salt)
state € hmac _shab512 (salt_hash, pwd)
for i € 0 to 1 < 3 do
for j € 0 to j < sbox_words, j+=SHA512 DIGEST LENGTH do

sbox[i] + j € shab5l12 (state)
state € sbox[i] + j
end for
end for
key hash € hmac sha512 (state, pwd)
expgndkey (salt__hash, key hash)
count € 2t_cost

RIG (Chang, Jati, Mishra, Sanadhya)

uses BLAKE2b

bit-reversal permutation

mitigation of cache-timing leaks

supports server relief and hash upgrade

Initialization phase:

z = (pwd)||s||binaryss(n)||binarysa|l|
T Hl o
for round 1 to

m
«
Setup Phas
AN
= | T
—> « o .

Iterative Transformation
pha k(0] k(1] k[m —

!EF_F_

Schvrch (Vuckovac)

e nho external primitive (fully original algorithm)
e separate “slow” and “big” computations
e extra “round” parameter for more slow down

for(i = ©9; i < rounds; i++)
{
for(j = 9; j < statelen; j++)
{
if(state[(j+2)%statelen]>state[(j+3)%statelen])

carry A= state[(j+1)%statelen];
else

carry A= ~state[(j+1)%statelen];

state[j] ~= carry;

Tortuga (sch)

e uses Turtle (Blaze, 1996) as permutation
e keyed sponge structure (absorb/squeeze)
e original and simple construction

TwoCats (cox)

uses BLAKE2s | BLAKE2b | SHA-256 | SHA-512
uses integer multiplications (fast on CPUs)
tweakable thread- and instruction-level //lism
supports server relief and hash upgrade

Yarn (Capun)

uses AES round and BLAKE2b
parallelism parameterizable

3 “time” parameters for distinct resources
simple and compact design

function Yarn(in, salt, pers, outlen, t cost, m cost, par, initrnd, m step):
// Phase 1 - initialization
h <- BlakeZb GeneratelInitialState(outlen, salt, pers)
h <- BlakeZb ConsumeInput (h, in)
16 * (par + initrnd + 1)))
tate <- expanded h[0 .. par - 1]
expanded h[par .. par + initrnd - 1]

index <- Integerify(expanded h[par + initrnd])
se 2 - memory filling
. 2**m cost:
<- state[0]
<- AESPseudoEncrypt(state[0], keys)
<- RotateState(state)
main phase

yescrypt (Peslyak a.k.a. Solar Designer)

uses scrypt with optional tweaks (via bit flags)
optional: local ROM, Salsa20 replacement
more parallelism options (thread and inst. level)
supports server relief

[solar@super yescrypt-0.51% ./userom 112 14
r=7 N=2714 NROM=2"27
Will use 117440512.00 KiB ROM

14336.00 KiB RAM
ROM access frequency mask: 0x1
"$7X3%C5....7....WZ2aPY¥/LSUEKM034.$CCAZan09a/3SglylrerYQ3cKHyfc ji9LNZF zgUbgV¥b3~
Benchmarking 1 thread ...
/1 c/s real, 72 c/s virtual (127 hashes in 1.77 seconds)
Benchmarking 32 threads ...
1107 c/s real. 34 c/s virtual (1905 hashes in 1.72 seconds)

T

4

w

|
m

=

4. next steps., and how to contribute

in Q3 2014, we’ll select the finalists
(probably between 5 and 10)

in Q2 2015, we'll select the winners,
expected to become de facto standards

some panel members submitted:
we’ll avoid conflicts of interest

evaluation criteria

security (pseudorandomness, etc.)
efficiency ratio (e.g. CPU vs GPU)
simplicity (#LoCs, dependencies, etc.)
extra functionalities
target application
etc.

transparency

we’'ll try to have public discussions as
much as possible

a final report will be published,
justifying our choices

we need

reviews of the implementations
https://github.com/bsdphk/PHC/

third-party implementations
(to check consistency with the specs, etc.)

cryptanalysis
(memory bypass, side-channel attacks, etc.)

any comment or suggestion to improve

https://github.com/bsdphk/PHC/
https://github.com/bsdphk/PHC/

Thank you!

