Password Hashing Competition

JP Aumasson, Kudelski Security

This talk

The competition process
Special recognitions
The winner: Argon?2

Post-mortem / Aftermath

Why PHC?

* Legacy hashes not satistying:
e PBKDF2: low-memory
* pbcrypt: 4KB isn't enough memory today
e scrypt: complex to use, therefore not used

* Public crypto competitions work well so far

Support

* No funding, sponsoring, nor donations
* All work made on our free time

 No dedicated workshop, but talks at PasswordsCon

Timeline

2012 Q4: |dea shared on Twitter, panel created
2013 Q1: Call for submissions published

2014 Q1: 24 submissions received

2014 Q4: 9 finalists selected

2015 Q3: 1 winner announced (Argon?2)

I'he panel

* Cryptographers, hackers, password crackers,
software engineers

* From industry, FOSS community, academia, gov

* Diversity crucial to deliver relevant work

Call

* Requirements are the most important

* Then, evaluation criteria (can still be changed later)
* Should leave enough freedom to submitters

* No major disagreement within the panel

https://password-hashing.net/cfh.html

https://password-hashing.net/cfh.html

Minimal requirements likely sufficient for most
applications

Technical guidelines
The submitted password hashing scheme should take as input at least

« A password of any length between 0 and 128 bytes (regardless of the encoding).
e A salt of 16 bytes.

 One or more cost parameters, to tune time and/or space usage.

The scheme should be able to produce (but is not limited to) 32-byte outputs. If multiple output
lengths are supported, the output length should be a parameter of the scheme. Similarly, if multiple
salt lengths are supported, the salt length should be a parameter. Passwords longer than 128 bytes
may be supported, but that is not mandatory.

Other optional inputs include local parameters such as a personalization string, a secret key, or any
application-specific parameter.

Tentative evaluation criteria

Security

Cryptographic security: the function should behave as a random function (random-looking output, one-way,
collision resistant, immune to length extension, etc.).

Speed-up or other efficiency improvement (e.g., in terms of memory usage per password tested) of cracking-
optimized implementations (checking multiple sets of inputs in parallel, and doing so in a CPU's native code)
compared to implementations intended for password validation should be minimal.

Speed-up or other efficiency improvement (e.g., in terms of area-time product per password tested) of
cracking-optimized ASIC, FPGA, and GPU implementations (checking multiple sets of inputs in parallel)
compared to CPU implementations intended for password validation should be minimal.

Resilience to side-channel attacks (timing attacks, leakages, etc.). In particular, information should not leak
on a password's length.

Simplicity

Overall clarity of the scheme (design symmetries, modularity, etc.).
Ease of implementation (coding, testing, debugging, integration).
Use of other primitives or constructions internally (the fewer, the better).

Functionality

o Effectiveness of the cost parameter (e.g. can the time and space expected requirements be bypassed?).
e Ability to transform an existing hash to a different cost setting without knowledge of the password.

No distinction reference vs. optimized code, but
asked to prioritize simplicity over performance

Code

o Reference implementation in portable C(++) with necessary build instructions (e.g. a Makefile). Using C++
internally is allowed, but the program should provide an external C APIl. OpenSSL's libcrypto may be used
(e.g. for AES, SHA-256). The reference implementation should aim at simplicity and readability, rather than at
performance.

The API should include, but may not be limited to, a function with the following prototype:

int PHS(void *out, size t outlen, const void *in, size t inlen, const void *salt, size t saltlen,

unsigned int t_cost, unsigned int m_cost);

The t_cost and m_cost arguments are intended to parameterize time and memory usage, respectively,

however this is not a strict requirement (only one parameter may be effective, m_cost might affect time, etc.).
 Comprehensive set of test vectors (preferably including all byte values in the 0 to 255 range for both the

password and the salt inputs).
» Optionally, implementations in other languages or specific to a given CPU/GPU, microarchitecture, etc.

Submissions

e WO extremes

 “Academic”: rigorous specs, rationale, formal
proofs, lengthy documentation

* "Dirty": specs = code, handwaved claims,
succinct documentation

* High design diversity, new ideas

 Need to identity the best of each submission

Custom or non-custom?

* Argument for known crypto (AES, etc.): confidence,
code readily available, native instructions

 Arguments for custom design: strong crypto
overkill when iterated, bloats the design (scrypt)

e Full custom: Makwa, POMELQO

* Others using AES, BLAKEZ2, SHA-2

* Yescrypt based on scrypt, Putferfish on Blowfish

Side-channel defenses?

* By side-channel we mean cache-timing-like attacks
* Usually when input-dependent memory addressing
* |sitreally a concern for password hash?

* Not for local key derivation, unless cold-boot
attacks are a threat

* Perhaps when on co-located virtual machines

Server relief, hash upgrade”

* Server relief
H(pwd, salt) = ServerHash(ClientHash(pwd, salt))

 Hash upgrade
H(p, s, cost?2) = Upgrade(H(p, s, cost1), cost?)

* Not supported by PBKDF2/bcrypt/scrypt

e Nice to have

Time-space tradeofts?

* Possible when memory addresses and content
partially predictable

e Conflicts with side-channel protection

e Now much better understood than before PHC

Decision making

 Finalists:

1. Panel members asked to write their 5 favorite
and 5 least favorite submissions, with rationale

2. First ranking established, basis for private
discussions that would decide the 9 finalists

e Submitters weren't allowed to vote, just to comment

Decision making

Winner: One or more”?

Panel members asked to score in 1-3 each finalist in 4
categories: Technical superiority, ease of deployment,
features, confidence

Everyone participated, even submitters

Private, but told panel that scores/comments may be
published later (several but not all were)

Then, as much discussions as possible held on the public
mailing list, except for the final decision

Decision making

Argon2 fine-tuning: all public discussions
Tweaks proposed by the designers and the panel
Review of specs / code for consistency and quality

Took about 3 months

Special recognitions

Or “second-place” winners

Quality, innovative submissions

We thought PHC would have more impact it we
gave a single recommendation, rather than (say) 5

recommendations for different use cases

Catena, Lyra2, Makwa, yescrypt

Catena

* By Christian Forler, Stefan Lucks, Jakob Wenzel
* Most comprehensive submission:
 Framework for password hashes
* 1-round BLAKEZ2Db as
* All aspects analyzed: side-channel, TMTOQO, etc.

* Proofs based on graph theory (pebble games)

| yraz

By Marcos A. Simplicio Jr, Leonardo C. Almeida,
Ewerton R. Andrade, Paulo C. F. dos Santos, Paulo
S. L. M. Barreto

Sponge-based design, well analyzed

One of the fastest, on defenders platforms

Uses a dedicated BLAKE?2 variant, BlaMka, with
MUL operations

Viakwa

By Thomas Pornin
Totally ditterent from the rest: bignum arithmetic
lterates x2 mod n, inverse as hard as factoring

Server offload: private key allows for efticient
veritication, client has to do it the hard way

yeSsCrypt

* By Solar Designer

e Evolution of scrypt

 Many tunable features:
* [Large ROM lookup table
e scrypt-compatibility mode
* Parallelization parameters

o Alternative to Salsa?20 (PWXtorm)

Argon?2

e PHC winner!

* By Alex Biryukov, Daniel Dinu, Dmitry Khovratovich

* Overhaul of the initial candidate Argon

* [wo versions: Argon2d and Arg

nttps://www.cryptolux.org/index.p

on?2

Np/Argon?2

nttps://github.com/P-H-C/phc-win

ner-argonZ

nttps://github.com/khovratovich/A

‘gon?

https://www.cryptolux.org/index.php/Argon2
https://github.com/P-H-C/phc-winner-argon2
https://github.com/khovratovich/Argon2

Argon2 |/O

Mandatory password and salt

Optional secret value and associated data
Cost parameters:

« Memory size (In KB)

* Number of iterations

e Parallelism

Returns a tag of at least 4 bytes

ArgonZ in a nutshell

 Aimed to be as simple as it can be

B[O] — H(P,S);
for 5 from 1 tot
e Hand G based on BLAKE2b

* Indexing different for Argon2d and Argon?2i

Argon?2 features

Good security analysis and performance
Yet a simple design, using trusted crypto
Three knobs for three distinct parameters

Leverages understanding from PHC discussions

Attack on Argon2?

Balloon Hashing: Provably Space-Hard Hash Functions
with Data-Independent Access Patterns

Henry Corrigan-Gibbs Dan Boneh Stuart Schechter
Stanford University Stanford University Microsoft Research

January 14, 2016

« TMTO with lower memory than expected/proved
* For Argon2i only (side-channel resistant version)

 Precomputation of the "useless’ memory blocks

Argon?2 today

* Argon2 main reference for users
https://github.com/P-H-C/phc-winner-argon?

e 34 issues submitted, 39 pull requests

* Non-trivial bugs, portabilities issues, API, etc.

e Third-party bindings for 8 languages

e Support by Argon2 designers, Samuel Neves, me

* Being integrated in Sodium, Debian (more to come)

https://github.com/P-H-C/phc-winner-argon2

PHC today

* Archives available on https://password-hashing.net/

* Mailing list still active

https://password-hashing.net/

PHC: What went well

Quality of the submissions

Agressive timeline, with only minor delays
Active public ML discussions, public archives
Flexibility of the process and criteria

Transparency, higher than in other competitions

Could’ve been better

Reports and justifications of our choices
Clarity of rules on tweaks (Argon? first rejected)
Description of the voting process

Amount of third-party cryptanalysis

| essons learneag

* As much progress in 2 years as in the past 20
years; competition is a good research motivator

* Rules need be flexible enough to integrate
progress made during the competition

e Processes and deliberations should be as
transparent and open as possible

lThanks

e NIST for this invitation
« PHC submitters and panel members
* Peter Gutmann, for letting me borrow from his pres

https://www.cs.auckland.ac.nz/~pgut001/pubs/
phc.pdf

https://www.cs.auckland.ac.nz/~pgut001/pubs/phc.pdf

