

"Random numbers are absolutely essential

for a crypto library, if they suck we don’t even have to
get started with encryption or anything else, because

It all collapses to something trivially deterministic and
therefore predictable.”

Martin BoBlet

randomness

Ya

Are these bits random?

01001101110101101010

“10 Is random”
makes no sense

(without a context)

Talk instead of random variables
with a given distribution

An object may have been

(pseudo)randomly generated
(we talk, a posteriori, of (pseudo)random bits)

“Randomness means different things in
various fields. Commonly, it means lack
of pattern or predictability in events.”

Wikipedia

Have these bits been
(pseudo)randomly generated?

071001101110101101010

Have these bits been
(pseudo)randomly generated?

01001101110101101010
Probability = 2-20

Have these bits been
(pseudo)randomly generated?

00000000000000000000

Have these bits been
(pseudo)randomly generated?

00000000000000000000
Probability = 2-20

Don’t be “fooled by patterns”

PRNG are not RNGs

“Any one who considers arithmetical
methods of producing random digits is,
of course, in a state of sin.”

John von Neumann

RNGs produce random bits

* non-deterministically

* thanks to analog sources

* With a deterministic postprocessing

PRNGS produce pseudorandom bits
e deterministically
» from a digital seed (taken from an RNG)

Both produce “unpredictable” bits from “uncertainty”

Uncertainty comes from the
real (analog/physical) world

Uncertainty quantified with the notion of

entropy

Defined for a random variable, for example
« Symmetric keys (should have as much entropy as bits)

« Public keys (as much entropy as log, #choices)

log, #choices

= minimal entropy required for secure generation
= minimal size of the RNG internal state

“I group random with stochastic or chancy,
taking a random process to be one which
does not operate wholly capriciously or
haphazardly but in accord with stochastic

or probabilistic laws.”
John Earman A Primer on Determinism, 1986

Any distinction, given physics’ laws?

randomness
In cryptography

Key generation
(symmetric and asymmetric)

Challenge-response
authentication protocols

Semantically secure encryption

Vs, nonces in block and stream ciphers
Padding in RSA-OAEP, El Gamal, etc.

Probabilistic signatures
DSA, ECDSA, etc.

Key agreement
authenticated Diffie-Hellman, MQV, etc.

Side-channel defenses
Blinding, masking, jitter, etc.

Etc. etc.

Where does randomness come from?

“Entropy” + postprocessing to eliminate biases

(bits sampled from analog sources are often not
uniformly distributed, i.e;. entropy of <1 per bit)

Implemented in OS’ as
 /dev/random and /dev/urandom OnN unices
* CryptGenRandom on Windows

 Ad hoc tricks...

/dev/urandom and /dev/random

* Device file probing analog sources to gather
entropy and generate random bytes

* Implemented differently on different OS’

— Linux
— FreeBSD

— OpenBSD
— etc.

f
—
A
[l e e

include <sys/types.h>
include <sys/stat.h>

4 - q 1 ~
— — -\.t = -
14 e <1 Chtl .n-=>
- | o - 1 1~ -
o — - .t_,—.' - ™
1 T1¢ e <Uniscd.n-
- | -] = 1 ~
o — .t_,—.' — = -
1 T1¢ e <3 LCAdl1lo.n-=>

int main() {

int randint;
int £fd = open("/dev/urandom",
(fd '= -1) {

read (fd, &randint, sizeof randint) ;
1
printf ("%08x\n",
close (£d) ;

0;

O RDONLY) ;

randint) ;

/dev/ (u) random on Linux

i

entropy i o i

y estimation I L : !

i e ‘entropy:i_____! '

mixing I : py" !
t

ounter! | TN
]

..........

'blocking

- E— o
P | 1
ter i 1 pool 2 output +—> /dev/random
put pool : i : P!
! HIl nonblocking |) !
! - pool > output —+—> /dev/urandom
- r] i
le———1entropy - - - - - — :
! icounter: |]
tropy a mulat andom numb
genera tion

e Entropy from keyboard/mouse/interrupts/disk
« 4kB entropy pool, internal mixing (linear)
» Postprocessing based on SHA-T

/dev/ (u) random on Linux

* Current entropy /proc/sys/kernel/random/
« Entropy appears to decrease (1) on inactivity

$ cat /proc/sys/kernel/random/entropy_avail

3459

S dd if=/dev/random bs=1024 count=1 2>/dev/null | od -t x1 -An
ed fO 78 d7 21 21 ed b2 39 el 1e ec 70 b5 a7 77
52 bd d6 04 85 c9 0Oc 48 78 d3 b0 71 ef 1c al f6
c6 f2 dc 58 4b 76 cf 1f 61 97 ba 50 26 58 5b ad
5f fa 95 21 df 53 85 26 a0 90 ce f6 af 08 cd b2
df 4b bf 3e c9 f7 99 10 55 e2 ec e4 32 c7 88 08
09 73 8f d1 80 d2 f7 1e 3e db f1 a2 64 15 ea dO
dl 7b 50 45 64 18 71 88 12 24 5d f4 1a ee 94 70
7d 34 31 29 8a cb 2f a3 2e 7a b7 dé6 89 76 3a b3

S cat [proc/sys/kernel/random/entropy_avail

2216

$ cat [proc/sys/kernel/random/entropy avail

2112

$ cat [proc/sys/kernel/random/entropy_avail

2005

/dev/ (u) random on Linux

 /dev/random blocks when insufficient entropy
* Thisiswhy gpg --gen-key can complain

$ cat /proc/sys/kernel/random/entropy_avail

644

S dd if=/dev/random bs=1024 count=1 2>/dev/null | od -t x1 -An
4f cd fc 9 45 63 44 db Oe b8 02 e4 a6 2a 93 ef

68 73 al cf cd 7c 43 87 9f ee 4c 52 60 77 d8 59

af fb 06 4f e9 Oc 9d 67 6d cd 16 68 88 f6 cO 01

ef 96 13 25

$ cat /proc/sys/kernel/random/entropy_avail

A

S dd if=/dev/random bs=1024 count=1 2>/dev/null | od -t x1 -An
d7 ec 27 75 61 17 81 02

S ~C

Attempting to dump 1KB blocks from /dev/random

/dev/ (u) random on Linux

 /dev/urandom IS fine in most cases
« Most libs default to /dev/urandom for usability

memset(randomstats,,sizeof(randomstats));

for (1 = 0; (1 < sizeof(randomfiles)/sizeof(randomfiles[(])) &&

(n < ENTROPY_NEEDED); i++)

{
if ((fd = open(randomfiles[1], O_RDONLY

openssl-1.0.1/crypto/rand/rand unix.c

CryptGenRandom

« Based on AES-CTR on Vista/7 (NIST SP 900-90)

» Less straightforward use than /dev/random
need to create/release a “cryptographic context”

« Harvesting entropy from
— Environment variables
Process / thread IDs

Time and date
CPU counters
etc.

State

Key

By ||« || Biy | By

b

Pseudorandom bits

CryptGenRandom

#include <iostream>
#include <windows.h>
fpragma comment (lib, "advapi32.lib")

int main/()

{
HCREYPTFROV hProvider = 0;

(!::CryptAcquireContextW (&hProvider, 0, 0, PROV_RSA FULL, \

CRYPT VERIFYCONTEXT | CRYPT SILENT))
1;

const DWORD dwLength = 8;
BYTE pbBuffer[dwLength] = {}:;

(!::CryptGenRandom (hProvider, dwlength, pbBuffer))
::CryptReleaseContext (hProvider, O0);
1;
(DWORD i = 0; 1 < dwLength; ++1i)
std::cout << std::hex << static cast<unsigned int> (pbBuffer[i]) << std::endl;

(!::CryptReleaseContext (hProvider, 0))
1;

When none is available?

1. Collect entropy from the most sources:
— environment (e.g. env, ps aux), time, etc.

— CPU (RDTSC, RDPMC, temperature, etc.)
— logs (dmesg, access log, etc.)

2. Hash the data collected with (say) SHA-2
3. Seed a strong PRNG with the result

Be. very. careful.

Bug #1: Netscape (1996)

global variable seed;

RNG_CreateContext()
(seconds, microseconds) = time of day; /* Time elapsed since 1970 */
pid = process ID; ppid = parent process 1ID;
a = mklcpr{microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MDS(a, b);

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((OxDEECEGGD * x + Ox2BBB62DC) >> 1);

MDS() /* a very good standard mixing function, source omitted */

RNG_GenerateRandomBytes()
x = MDS5(seed);
seed = seed + 1;
return x;

Bug #1: Netscape (1996)

An attacker who has an account on the UNIX machine running the Netscape browser can easily
discover the pid and ppid values used in RNG_CreateContext() using the ps command (a utility
that lists the process IDs of all processes on the system).

All that remains 1s to guess the time of day. Most popular Ethernet sniffing tools (including
tcpdump) record the precise time they see each packet. Using the output from such a program,
the attacker can guess the time of day on the system running the Netscape browser to within a
second. It is probably possible to improve this guess significantly. This recovers the seconds
variable used in the seeding process. (There may be clock skew between the attacked machine
and the machine running the packet sniffer, but this 1s easy to detect and compensate for.)

Of the variables used to generate the seed in Figure 2 (seconds, microseconds, pid, ppid), we
know the values of seconds, pid, and ppid; only the value of the microseconds variable remains
unknown. However, there are only one million possible values for 1t, resulting in only one million
possible choices for the seed. We can use the algorithm in Figure 3 to generate the challenge and

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

Bug #1: Netscape (1996)

Our second attack assumes the attacker does not have an account on the attacked
UNIX machine, which means the pid and ppid quantities are no longer known.
Nonetheless, these quantities are rather predictable, and several tricks can be
used to recover them.

The unknown quantities are mixed in a way which can cancel out some of the
randomness. In particular, even though the pid and ppid are 15bit quantities on
most UNIX machines, the sum pid + (ppid << 12) has only 27 bits, not 30 (see
Figure 2). If the value of seconds 1s known, a has only 20 unknown bits, and b
has only 27 unknown bits. This leaves, at most, 47 bits of randomness in the
secret key-a far cry from the 128-bit security claimed by the domestic U.S.
version.

Bug #1: Netscape (1996)

What happened

— RNG using only weak entropy sources

Lessons

— Don't only use weak entropy sources
(IDs, timestamps, machine configuration, etc.)

— Estimate entropy

— A stronger post-processing doesn’'t matter
(problem doesn’t change if MDS5 is replaced with SHA-2)

Bug #2: Debian (2008)

char buf[100];

fd = open(”/dev/random”, O_RDONLY);
n = read(fd, buf, sizeof buf);
close(fd);

RAND_add(buf, sizeof buf, n);

RAND add(*buf, num, entropy)

MD_Update(&m,buf,j);

Bug #2: Debian (2008)

Subject: Random number generator, uninitialised data and valgrind.
Date: 2006-05-01 19:14:00

When debbuging applications that make use of openssl using
valgrind, it can show alot of warnings about doing a conditional
jump based on an unitialised value. Those unitialised values are
generated 1n the random number generator. It’'s adding an
unintialiased buffer to the pool.

The code in question that has the problem are the following 2
plieces of code in crypto/rand/md_rand.c:

247 :
MD_Update(&m,buf, j);

467 :
#ifndef PURIFY

MD_Update(&m,buf,j); /* purify complains x/
#endif

Bug #2: Debian (2008)

Because of the way valgrind works (and has to work), the place
where the unitialised value 1is first used, and the place were the
error 1s reported can be totaly different and i1t can be rather
hard to find what the problem 1is.

What I currently see as best option 1s to actually comment out
those 2 lines of code. But I have no i1dea what effect this
really has on the RNG. The only effect I see is that the pool
might receive less entropy. But on the other hand, I'm not even
sure how much entropy some unitialised data has.

What do you people think about removing those 2 lines of code?

Bug #2: Debian (2008)

2 responses on the mailing list...

Both essentially said, “go ahead, remove the MD_update line.” The Debian maintainer
did, causing RAND_add not to add anything to the entropy pool but still update the
entropy estimate. There were other MD_update calls in the code that didn't use buf,
and those remained. The only one that was a little unpredictable was one in
RAND_bytes that added the current process ID to the entropy pool on each call. That's

why OpenSSH could still generate 32,767 possible SSH keys of a given type and size
(one for each pid) instead of just one.

Bug #2: Debian (2008)

What happened

— “"Optimization” of sloppy code dramatically
reduced the entropy of the PRNG

Lessons
— Beware of “optimizations” and of “clever code”
— Do not tweak OpenSSL (unless you really have to)
— Have the crypto code review by experts

Randomness for randomization

Often to generate random objects, like

— Numbers in an arbitrary range
— RSA moduli

How Is this done?
— How to generate a random number in {1,2,3} ?
— How to generate a random 1k RSA modulus?

Bug #3: Cryptocat (2013)

This generates a string of 16 digits in {0,1,..,9}:

Cryptocat.random = function() {
var x, o= '";
while (o.length < 186) {
x = state.getBytes(1);
if (x[@] <= 258) {
0 += X[8] % 18;
1
J
1
J
return parsefFloat('e.’ + o0);

What's wrong?

Bug #3: Cryptocat (2013)

getBytes Is a strong PRNG, based on Salsa20

Cryptocat.random = function() {
var x, o = "}
while (o.length < 16) {
x = state.getBytes(1);
if (x[e] <= 258) {
0 += x[0] % 10,
1
J
1
J
return parsefloat('@.’ + 0);

Selects integers in {0,1,..,250} = 251 possible values:

— 25 valuesgiveal, 25valuesa 2, ..., 25valuesa 9
— 26 values givea 0

Bug #3: Cryptocat (2013)

getBytes Is a strong PRNG, based on Salsa20

Cryptocat.random = function() {
var x, o = "}
while (o.length < 16) {
x = state.getBytes(1);
if (x[e] <= 258) {
0 += x[0] % 10,
1
J
1
J
return parsefloat('@.’ + 0);

=) 16-digit string has entropy 45 bits instead of 53
=» Bruteforce would take on average 244 instead of 2°2

Bug #3: Cryptocat (2013)

What happened

— A bias was introduced in the postprocessing of
strong random bits

Lessons
— Distinguish PRNG from sampling algorithms

— Make sure the algorithm implements a uniformly
random sampling

— Test, test, test

Bug #4: Routers, firewalls, switches...

prng.seed(seed)

p = prng.generate random prime()
prng.add randomness(bits)

g = prng.generate random prime()

N = p*q

What can go wrong?

Bug #4: Routers, firewalls, switches...

prng.seed(seed)

p = prng.generate random prime()
prng.add randomness(bits)

g = prng.generate random prime()

N = p*q

What if two devices start with a same seed?
(and later gather distinct entropy bits from their activity)

Bug #4: Routers, firewalls, switches...

Even more alarmingly, we are able to compute the
private keys for 64,000 (0.50%) of the TLS hosts and

108,000 (1.06%) of the SSH hosts from our scan data
alone by exploiting known weaknesses of RSA and DSA
when used with insufficient randomness. In the case of
RSA, distinct moduli that share exactly one prime factor
will result in public keys that appear distinct but whose
private keys are efficiently computable by calculating
the greatest common divisor (GCD). We implemented
an algorithm that can compute the GCDs of all pairs of
11 million distinct public RSA moduli in less than 2 hours

https://factorable.net

https://factorable.net/

Bug #4: Routers, firewall, switches...

What happened

— Entropy reuse + structured sampling = Fail

Lessons
— RSA key generation is not failure-friendly

— On low-entropy platforms, wait until sufficient
entropy before generating crypto secrets

— Test, test, test

Which PRNG should we use?

C(++): OpenSSL, NaCl (TODO)

Python/Ruby/Perl/Go etc.: a crypto-strong module
seeding from /dev/ (u) random Or CryptGenRandom

If a hardware RNG is available, use it (RdRand..)

Need to rely on a specific algorithm?
— Secure-blockcipher-CTR, secure stream cipher
— Better to implement reseeding (with FS/BS)
— Be very careful — get your code reviewed, tested

Bug #5: Mediawiki (2012)

Bug #5: Mediawiki (2012)

generateToken(S

return . S

This generates password-reset tokens...

Bug #5: Mediawiki (2012)

mt_srand(seed) /mt_rand(min, max): mt_rand is the interface for the Mersenne Twister
(MT) generator [15] in the PHP system. In order to be compatible with the 31 bit output
of rand(), the LSB of the MT function is discarded. The function takes two optional
arguments which map the 31 bit number to the [min, max] range. The mt_srand () function
is used to seed the MT generator with the 32 bit value seed; if no seed is provided then the
seed is provided by the PHP system.

(Argyros/Kiayias, 2012)

19937-bit state, but fully linear update and 32-bit seed:
Thtn = Tham D ((xx A 0280000000)|(zrrq N OxTHITT)) A

A — (x> 1) if 23! =
A= (x>1)@a ifz’l =1

Bug #5: Mediawiki (2012)

A SeSSion identifier preimage completely determines
the Seed of the mt_rand() and rand() PRNGS!

(Argyros/Kiayias, 2012)

— Weak RNG can be exploited to
— Hijack sessions
— Predict temporary passwords

Bug #5: Mediawiki (2012)

What happened
— Weak RNG used for security purposes

Lessons

— Avoid non-crypto PRNGs, even for other
applications than key generation

— In PHP, better use openssl random pseudo bytes
(and check the $crypto strong flag)

— Don't use PHP’s rand () ormt rand();C's
random (3), rand (3); LFSRs; etc.

Can | make sure that my entropy is OK?
That my PRNG implementation is OK?

TESTING

will detect many randomness bugs
will NOT detect many randomness bugs

Testing (P)RNGs

Test as much as possible
 The PRNG function

— Determinism, through test vectors in different settings
— Usual software bugs, memory leaks, etc.
— Pseudorandomness statistical tests

 The underlying entropy source
— How much bits should be expected? Does if fail securely?
— |Is the entropy quality consistent accross OSs/hardware?

 The usage of pseudorandom bits
— Sampling algorithm for software bugs
— Distribution of sampled objects (is it really uniform?)

Statistical tests: background

Can provide evidence that a PRNG is weak, but
NOT evidence that a PRNG is cryptographically strong

| ARE

NINE NINE F YOU THAT'S THE
NINE NINE :| surEe PROBLEM
NINE NINE | THATS WITH RAN-
3| RANDOM? DOMNESS
\ : ' YOU CAN
k NEVER BE
i

Based on hypothesis testing methods
result = likelihood that the hypothesis was correct

Typically hypothesis: uniform distribution

Statistical tests: background
Remember that

1. Cryptographic weaknesses will NOT be
detected by statistical tests

2. It 1s easy to designh a weak PRNG that will
successfully pass all statistical tests

Corollary: backdoors in hardware (P)RNGs can remain
undetectable by statistical tests and black-box query

Statistical test suites
Test with deterministic seeds

Use large enough samples (a few megabytes)

Check the encoding in your test sample
(e.g., base-64 will look non-random if tested as binary data)

If not sure how to interpret the result, compare

with a reliable source of randomness:
dd i1f=/dev/urandom of=buf bs=1014 count=1024

Ent (www.fourmilab.ch/random)

Easiest to use, limited set of tests

. /ent onekb
ntropy = 7.756598 bits per byte.

Optimum compression would reduce the size
of this 1014 byte file by 3 percent.

hi square distribution for 1014 samples is 315.48, and randomly
ould exceed this value 0.59 percent of the times.

Arithmetic mean value of data bytes is 125.1844 (127.5 = random).
onte Carlo value for P1 is 3.266272189 (error 3.97 percent).
Serial correlation coefficient is 0.023406 (totally uncorrelated = 0.0).

Results for 1 KB from /dev/urandom

Ent (www.fourmilab.ch/random)

Easiest to use, limited set of tests

S ./ent onemb
Entropy = 7.999806 bits per byte.

Optimum compression would reduce the size
of this 1028196 byte file by 0 percent.

Chi square distribution for 1028196 samples is 277.22, and randomly
would exceed this value 16.21 percent of the times.

Arithmetic mean value of data bytes is 127.4411 (127.5 = random).
Monte Carlo value for Pi i1s 3.135441103 (error 0.20 percent).
Serial correlation coefficient is 0.001117 (totally uncorrelated = 0.0).

Results for 1 MB from /dev/urandom

Ent (www.fourmilab.ch/random)

Easiest to use, limited set of tests

. /fent tenmb
ntropy = 7.999984 bits per byte.

Optimum compression would reduce the size
of this 10383360 byte file by 0 percent.

hi square distribution for 10383360 samples is 224.86, and randomly
ould exceed this value 91.33 percent of the times.

Arithmetic mean value of data bytes 1s 127.5012 (127.5 = random).
onte Carlo value for P1 is 3.141561113 (error 0.00 percent).
Serial correlation coefficient is -0.000111 (totally uncorrelated = 0.0

Results for 10 MB from /dev/urandom

Diehard (http://www.stat.fsu.edu/pub/diehard/)

Suite of statistical tests, less simple to interpret

Chi-square with 5A5-5A4=2500 d.of f. for sample size: 256000
chisquare equiv normal p value
Results for COUNT-THE 1's in specified bytes:
bits 1 to 8 2536.11 .511 .695213
to 2612.60 1.592 .944354
2542. .594 .723845
to 2443. -.795 .213197
to 2557. .818 .793223
to 2512. .176 .569843
to 2491. .116 .453666
bits to 2483. .236 .406576
bits to 2452. .676 . 249667
bits to 2483. .229 .409383
bits to 2503. .048 .518962
bits to 2590. .278 .899430
bits to 2572. .030 .848574
bits to 2508. .124 .549239
bits to 2650. .135 .983630
bits to 2698. .806 .997493
bits to 2545. .642 .739515
bits to 2428. .014 .155331
bits to 2376. .753 .039841
bits to 2696. .775 .997240
bits to 2623. 752 .960108
bits to 2432. .955 .169760
bits to 2452. .676 .249444
bits to 2427. .029 .151814
bits to 2414. .203 .114581

bits
bits
bits
bits
bits
bits

woo~sIguvipbwr

Chisquare wit

For a sample of size 500:
using bits 3 to 26 2.086
dupTlicate number number
spacings observed expected

56. 67.668

135. 135.335

.335

.224

L1112

. . 045

6 to INF . .282
Chisquare with 5.31 p-value= .495244

For a sample of size 500: mean
using bits 4 to 27 1.992
duplicate number number
spacings observed expected
67. 67.668
139. 135.335
133. 135.335
93. 90.224
40. 45.

p-values should be uniformly distributed
(e.g., a p-value consistently close to zero indicates a bias)

CONCLUSION:
The 10 commandments

Do not rely only on predictable
entropy sources like timestamps,
PIDs, temperature sensors, etc.

Do not rely only on
non-crypto functions
like stdlib’'s rand (), random (),
Python's random module,
PHP'S rand () andmt rand(),
Java’'s java.util.Random,
etc.

Do not use non-crypto PRNGS like
LFSRs, LCGs, Mersenne Twister, etc.

Do not use Raa$S

(things like www.random.org)
-» random bits may be shared or reused

http://www.random.org/

Do not design your own PRNG, even
If It's based on strong crypto
(unless you know what you're doing)

Do not reuse bits accross applications

Do not conclude that a PRNG is
secure just because It passes all the
statistical tests (Ent, Diehard, etc.)

Do not assume that a crypto-secure
PRNG does necessarily provide
forward or backward secrecy, would
the internal state leak to an attacker.

Do not directly use “entropy” as
pseudorandom data (entropy from
analog sources is often biased)

Do not use random bits

If you don't have to
(it's safer to use a counter as a nonce, for example)

TEST TEST TEST!

THANK YOU!

