
SAFE
Faster and simpler hashing for ZKPs

https://safe-hash.dev

Dmitry Khovratovich – Ethereum Foundation and Dusk Network
Jean-Philippe Aumasson - Taurus and Inference

Porçu Quine – Lurk Lab and Protocol Labs

zkSummit8, Berlin

https://safe-hash.dev

Hashing and ZK proof systems

Cryptographic hashing is a crucial ingredient of ZKP's, as it is used..

● For commitments, Merkle trees, Fiat-Shamir transforms, etc.
● Via plain hashing, PRFs, DRBGs, XOFs, etc.
● Everywhere in recursive SNARKs and STARKs

Hashing and ZK proof systems

Cryptographic hashing is a crucial ingredient of ZKP's, as it is used..

● For commitments, Merkle trees, Fiat-Shamir transforms, etc.
● Via plain hashing, PRFs, DRBGs, XOFs, etc.
● Everywhere in recursive SNARKs and STARKs

The efficiency metric is not simply speed of a "vanilla" software implementation

It's mainly the number of constraints (R1CS or AIR) a.k.a. "algebraic complexity", in
order to minimizes proof generation and verification

ZKP-friendly hash functions

To be efficient, these must work with similar structures as the constraint systems
– usually, finite fields, where (for example) XOR becomes costly, on prime fields.

Fast BLAKE2 becomes slow and big – "ZK-friendly" designs are necessary

ZKP-friendly hash functions

To be efficient, these must work with similar structures as the constraint systems
– usually, finite fields, where (for example) XOR becomes costly, on prime fields.

Fast BLAKE2 becomes slow and big – "ZK-friendly" designs are necessary

Poseidon family is the de facto standard
Used in Aleo, Anoma, Dusk, Filecoin,
Penumbra, Polygon, zkSync, etc.

Other designs sometimes optimized for
specific cases (field size, constraints type)

ZKP-friendly sponge functions

Simplest approach for ZK hashes, only requires a permutation

ZKP-friendly duplex functions

Generalization of sponges, to build hashes, PRFs, DRBGs, XOFs, etc.

Improving ZK hashing

Common "pain points" to address:

● Security flaws are common (modes design/choice, domain separation, etc.)
● ZK hashes expose an inconsistent API which is difficult to use securely
● Padding schemes reduces performance

Some "quick wins" in terms of simplicity and efficiency:

● Working with field elements rather than bits
● Assume input length known in advance

Hashing is hard

Did this small experiment while preparing the talk:

count = 1
while (true) {

do("Pick a random Poseidon implementation on GitHub")
do("Spend 5 minutes looking for bugs")
if (bug found)

return count
count++

}

The "program" returned 2

SAFE: making ZKP hashing easy and secure

Sponge API for Field Elements, a framework for protocol developers:

● Specification of a sponge state and API
● Eliminates padding, by introducing "IO patterns"
● Implementation-ready pseudo-code and models

SAFE aims to become the standard for ZK hashing, bringing:

● Interoperability of libraries across protocols and proof systems
● A common language to specify hash-based protocols
● A basis for hardware-accelerated hashing

What SAFE is NOT

SAFE is NOT a new hash construction, but a variant of the duplex mode with
interfaces defined in terms of field elements rather than bits

SAFE is NOT a new permutation, but can be instantiated with..

● Any existing permutation algorithm (such as Poseidon's)
● Any large enough finite field and field size

The SAFE API

Done once at init
time

Series of calls of
ABSORB and
SQUEEZE in
arbitrary order

Done once:
verifies all calls
were done and
erase the state

A SAFE state

● A permutation state of n field elements (width n = rate + capacity)
● A permutation – operating on field elements
● Internal counters:

○ Absorb position
○ Squeeze position

● A hasher algorithm – a "vanilla" hash (only for precomputation of the IV)
● A parameter tag T – think "IV/initialisation value"

The parameter tag

The initial value of the hash (precomputed), makes an instance unique

Derived from an IO pattern (sequence of ABSORB and SQUEEZE calls)

● Calls and their length parameters encoded to a byte string
● String hashed to a 128-bit value with the hasher (SHA3-256 by default)
● Optional domain separator D to distinguish identical IO patterns

Which of these IO patterns correspond to
equivalent instances? (and thus a same tag)

The SAFE API

Done once at init
time: commit to
an IOpattern

Series of calls of
ABSORB and
SQUEEZE in
arbitrary order

Done once:
verifies all calls
were done and
erase the state

"Middleware" between applications and a permutation

Example: Merkle tree
Output root =

field element Y

Field element X1 Field element X2

Example: Merkle tree
Output root =

field element Y

Field element X1 Field element X2

Parameter tag computation and test vector:

Example: Interactive protocol

Challenges generation (simplified model):
PROVER VERIFIER

π1 (L1 field elements)
π2 (L2 field elements)

c1 (1 field element)

π3 (L3 field elements)

c2 (1 field element)
c3 (1 field element)

Limitations

● Length of data hashed must be known in advance:
○ Very few cases where it's a problem
○ This assumption makes the design simpler and more efficient
○ In the specs we describe an "infinite length" PRNG and an AEAD mode where the input is not

known in advance

● Protocol-specific input domain separation is the responsibility of the
protocol, not SAFE's (for ex, if different types are encoded to field elements)

● Need for a 128-bit hash function, to compute the initialization tag
○ Doesn't need to be circuitized, precomputed "offline", output can be hardcoded

● The duplex security proof must be adapted to fully apply to SAFE
○ Work in progress :)

How to adopt SAFE?

Follow the specs at https://safe-hash.dev

See Filecoin implemented it in https://github.com/filecoin-project/neptune

Hash function designers: Pick/design your permutation and parameters, don't
worry about the mode

Protocol designers: Define the use of hashing in terms of SAFE calls, using SAFE
API terminology – will make implementation straightforward

Implementers: Abstract out your software/hardware hash design as a SAFE
instance, to be instantiated with the parameters received

https://safe-hash.dev
https://github.com/filecoin-project/neptune

Thank you!
https://safe-hash.dev

Get in touch on Telegram if you have questions or need help:

Dmitry /@khovratovich, JP /@veorq, Porçu /@porcuquine

https://safe-hash.dev

