SAFE

Faster and simpler hashing for ZKPs

https://safe-hash.dev

Dmitry Khovratovich - Ethereum Foundation and Dusk Network
Jean-Philippe Aumasson - Taurus and Inference
Porcu Quine - Lurk Lab and Protocol Labs

zkSummit8, Berlin

https://safe-hash.dev

Hashing and ZK proof systems

Cryptographic hashing is a crucial ingredient of ZKP's, as it is used..

e For commitments, Merkle trees, Fiat-Shamir transforms, etc.
e Via plain hashing, PRFs, DRBGs, XOFs, etc.
e Everywhere in recursive SNARKs and STARKSs

Hashing and ZK proof systems

Cryptographic hashing is a crucial ingredient of ZKP's, as it is used..

e For commitments, Merkle trees, Fiat-Shamir transforms, etc.
e Via plain hashing, PRFs, DRBGs, XOFs, etc.
e Everywhere in recursive SNARKs and STARKSs

The efficiency metric is not simply speed of a "vanilla" software implementation

It's mainly the number of constraints (R1CS or AIR) a.k.a. "algebraic complexity", in
order to minimizes proof generation and verification

ZKP-friendly hash functions

To be efficient, these must work with similar structures as the constraint systems
- usually, finite fields, where (for example) XOR becomes costly, on prime fields.

Fast BLAKE2 becomes slow and big - "ZK-friendly" designs are necessary

ZKP-friendly hash functions

To be efficient, these must work with similar structures as the constraint systems
- usually, finite fields, where (for example) XOR becomes costly, on prime fields.

Fast BLAKE2 becomes slow and big - "ZK-friendly" designs are necessary

Poseidon family is the de facto standard
Used in Aleo, Anoma, Dusk, Filecoin,
Penumbra, Polygon, zkSync, etc.

Other designs sometimes optimized for
specific cases (field size, constraints type)

Performance
Zero knowledge Native
R1CS | Plookup | Area-degree
eq-s | reg. gates product (ps)
Poseidon 243 633 9495 19
Rescue 288 480 7200 480
Rescue-Prime 252 420 6300 415
Feistel-MiMC 1326 1326 19890 38
Griffin 96 186 2790 115
Neptune 228 1137 17055 20
SHA-256 27534 3000 60000 0.32
Blake2s 21006 2000 40000 0.21
Pedersen hash 869 13035 54
SINSEMILLA 510 1530 137
Reinforced Concrete-BN/BLS - 378 5670 34
Reinforced Concrete-ST - 360 5400 1.09

ZKP-friendly sponge functions

Simplest approach for ZK hashes, only requires a permutation

M

N

(pad }

0

0

absorbing : squeezing

|
|
- " - 1§ - = -
NN 5 Y " B AN 7 | > > >
I Iy [f
|
U TIET

ZKP-friendly duplex functions

Generalization of sponges, to build hashes, PRFs, DRBGs, XOFs, etc.

o)) Zy 01 A g2 Zy
A A | A

Li Y Y
pad - £ ad | & vad | &
(pd) (116 || (o)m(uf) (<)ﬁ(u‘f)

| o LL—& 5. 5.

I f f

C 0 > > =

7 \—_/ _/ o/
init. duplexing duplexing duplexing

Improving ZK hashing

Common "pain points" to address:

e Security flaws are common (modes design/choice, domain separation, etc.)
e 7K hashes expose an inconsistent API which is difficult to use securely
e Padding schemes reduces performance

Some "quick wins" in terms of simplicity and efficiency:

e Working with field elements rather than bits
e Assume input length known in advance

Hashing is hard

Did this small experiment while preparing the talk:

count = 1
while (true) {
do ("Pick a random Poseidon implementation on GitHub")
do ("Spend 5 minutes looking for bugs")
if (bug found)
return count
count++

}

The "program” returned 2

SAFE: making ZKP hashing easy and secure

Sponge API for Field Elements, a framework for protocol developers:

e Specification of a sponge state and API
e Eliminates padding, by introducing "IO patterns”
e Implementation-ready pseudo-code and models

SAFE aims to become the standard for ZK hashing, bringing:

e Interoperability of libraries across protocols and proof systems
e A common language to specify hash-based protocols
e A basis for hardware-accelerated hashing

What SAFE is NOT

SAFE is NOT a new hash construction, but a variant of the duplex mode with
interfaces defined in terms of field elements rather than bits

SAFE is NOT a new permutation, but can be instantiated with..

e Any existing permutation algorithm (such as Poseidon's)
e Any large enough finite field and field size

The SAFE API

Done once at init , START(IOPattern,DomainSeparator) — State: This initializes the internal state of

time the sponge, modifying up to c/2 field elements of the state. It's done once in the lifetime of
a sponge.

Series of calls of * ABSORB(State,Length : L,FX : X[L]) — State: This injects L field elements to the

ABSORB and state from the array X, interleaving calls to the permutation as defined in 2.4. It also checks

SQUEEZE in if the current call matches the 10 pattern.

arbitrary order SQUEEZE (Length : L) — F: This extracts L field elements from the state, interleaving

calls to the permutation as defined in 2.4. It also checks if the current call matches the IO

pattern.
Done once: » FINISH(Length) — Result: This marks the end of the sponge life, preventing any further
verifies all calls operation. In particular, the state is erased from memory. The result is 0K , or an error.

were done and
erase the state

A SAFE state

e A permutation state of n field elements (width n = rate + capacity)
e A permutation - operating on field elements
e Internal counters:

o Absorb position
o Squeeze position

e A hasher algorithm - a "vanilla" hash (only for precomputation of the IV)
e A parameter tag T - think "IV/initialisation value"

The parameter tag

The initial value of the hash (precomputed), makes an instance unique
Derived from an IO pattern (sequence of ABSORB and SQUEEZE calls)

e C(Calls and their length parameters encoded to a byte string
e String hashed to a 128-bit value with the hasher (SHA3-256 by default)
e Optional domain separator D to distinguish identical IO patterns

e Pattern 1: » Pattern 3:
o ABSORB(L = 3) o ABSORB(L = 2);
o SQUEEZE(L =1). o ABSORB(L = 1);
« Pattern 2: o SQUEEZE(L =1).
o ABSORB(L = 2) .
o SQUEEZE(L = 1) Which of these 10 patterns correspond to

equivalent instances? (and thus a same tag)

The SAFE API

Done once at init , START(IOPattern,DomainSeparator) — State: This initializes the internal state of

time: commit to the sponge, modifying up to c¢/2 field elements of the state. It's done once in the lifetime of
an IOpattern

a sponge.

Series of calls of * ABSORB(State,Length : L,FX : X[L]) — State: This injects L field elements to the
ABSORB and state from the array X, interleaving calls to the permutation as defined in 2.4. It also checks
SQUEEZE in if the current call matches the 10 pattern.

arbitrary order « SQUEEZE(Length : L) — F~: This extracts L field elements from the state, interleaving

calls to the permutation as defined in 2.4. It also checks if the current call matches the IO

pattern.
Done once: » FINISH(Length) — Result: This marks the end of the sponge life, preventing any further
verifies all calls operation. In particular, the state is erased from memory. The result is 0K , or an error.

were done and
erase the state

"Middleware" between applications and a permutation

Sponge

low-level.
Done by
Sponge hash function designers

/// .

3. [lnmallze capacity()][permute(read_rate_element()] [add_rate_element() J

(stat) | [Avsorb() | [Saqueeze() | [Finish) | L raies

! |
1 |
! |
[|
! |
1 |
[|
' '
' '
v I}
\ ’
\ ,
\, /
\ " I 1 |

[Applications }

Example: Merkle tree

Output root =
field element Y

|

|

Field element X,

« START(IO|3], D) with IO the encoding of two 1-element ABSORBs and
one 1-element SQUEEZE (thatis, [0x81, 0x81, @x01]) and D an
arbitrary (possibly empty) domain separator

. ABSORB(1, X1)

. ABSORB(1, X>)

. Y + SQUEEZE(1)
« FINISH()

|

Field element X,

Output root =
field element Y

|
| |

Example: Merkle tree

Field element X, Field element X,

« START(IO|3], D) with IO the encoding of two 1-element ABSORBs and
one 1-element SQUEEZE (thatis, [0x81, 0x81, @x01]) and D an
arbitrary (possibly empty) domain separator

. ABSORB(1, X)

. ABSORB(l, X2) Parameter tag computation and test vector:
. Y + SQUEEZE(1)
FINISH () If computed with SHA3-256 with big-endian word-to-byte conversion, the 16-byte tag of our
[]
example would then be the hash of the serialized words [0x800000006,0x00000001] (note that

the three ABSORBs are aggregated), that is:

hashlib.sha3_256(b'\x80\x00\x00\x06\x00\x00\x00\x01"') .hexdigest() [:32]
'c1dff57614db1d8e3eald60bel1124497"'

Example: Interactive protocol
Challenges generation (simplified model):

« START(ZO|[6], D) with IO be the encoding of the following calls,
and D an arbitrary domain separator;

« ABSORB(z, Z)
« ABSORB(L4,m)
« ABSORB(Ly, m5)
e ¢1 + SQUEEZE(1)
« ABSORB(L3, 73)

» co + SQUEEZE(1)
« ¢c3 < SQUEEZE(1)

« FINISH()

PROVER VERIFIER

n, (L, field elements)
n, (L, field elements)

-
c, (1 field element)
-
n, (L, field elements)
-

c, (1 field element)
c, (1 field element)
<

Limitations

e Length of data hashed must be known in advance:
o Very few cases where it's a problem
o This assumption makes the design simpler and more efficient
o In the specs we describe an "infinite length" PRNG and an AEAD mode where the input is not
known in advance

e Protocol-specific input domain separation is the responsibility of the
protocol, not SAFE's (for ex, if different types are encoded to field elements)

e Need for a 128-bit hash function, to compute the initialization tag
o Doesn't need to be circuitized, precomputed "offline", output can be hardcoded

e The duplex security proof must be adapted to fully apply to SAFE

o Work in progress :)

How to adopt SAFE?

Follow the specs at https://safe-hash.dev

See Filecoin implemented it in https://github.com/filecoin-project/neptune

Hash function designers: Pick/design your permutation and parameters, don't
worry about the mode

Protocol designers: Define the use of hashing in terms of SAFE calls, using SAFE
API terminology - will make implementation straightforward

Implementers: Abstract out your software/hardware hash design as a SAFE
instance, to be instantiated with the parameters received

https://safe-hash.dev
https://github.com/filecoin-project/neptune

Thank you!

https://safe-hash.dev

Get in touch on Telegram if you have questions or need help:

Dmitry /@khovratovich, JP /@veorq, Por¢u /@porcuquine

https://safe-hash.dev

