SGX Secure Enclaves in Practice
Security and Crypto Review

JP Aumasson, Luis Merino

dh

This talk

e First review of SGX based on real hardware and SDK
e Revealing undocumented parts of SGX
e Tool and application releases

Intel® Software Guard Extensiens——

Intel® SGX is an Intel® Architecture extension designed
increase the security of application code. :

Props

Victor Costan (MIT)

Shay Gueron (Intel)

Simon Johnson (Intel)

Samuel Neves (Uni Coimbra)

Joanna Rutkowska (Invisible Things Lab)
Arrigo Triulzi

Dan Zimmerman (Intel)

Kudelski Security for supporting this research

What's SGX, how secure is it?

Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Adda page ENCLU[EENTER] Enter an Enclave
'ENCLS[EBLOCK] |Block an EPCpage = | ENCLU[EEXIT] Exit an Enclave
EMNCLS[ECREATE] Create an enclave ENCLU[EGETKE‘(] Create a cryptographic keif

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT]
ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME]

ONOSEOTEND] (e tPCpmenesrenernt ||
L L S —
OOSEDS [lwdm@pembeded | |
ONOSED [ladm@Cpmesmweded | |

ENCLS[EPA] Add version array

New instruction set in Skylake Intel CPUs since autumn 2015

SGX as a reverse sandbox
Protects enclaves of code/data from

e Operating System, or hypervisor
e BIOS, firmware, drivers
e System Management Mode (SMM)
o aka ring -2
o Software “between BIOS and OS”
e Intel Management Engine (ME)
o aka ring -3
o “CPU in the CPU”"
e By extension, any remote attack

There is no cloud

It’s just someone else's computer

DRM | & <@

Example: make reverse engineer impossible

1. Enclave generates a key pair

a. Seals the private key

b. Shares the public key with the authenticated client
2. Client sends code encrypted with the enclave's public key
3. CPU decrypts the code and executes it

WODLeRRE® 2mH L &5 s.'e.01.E)
PR e Y E mvif i aB 4 N
TaEL E e ewwil TSN L ... q....¥.1...
B TwhLHB B0 =S " XTI®N ...n.....>...5.%
'‘E A B EXE E EBETETE "R E-XoN N
T BA® A it d Al a® T W O I5. 0Ly
T vES Oy HOeF T AMBAT .mn.r.l.0bq....
RAT:2NE S DI AT L B ... B s e
fF 41T PE® &K ..MV Lwai R vl vuis
FE FBEREY FE EFE.E FIE B B TS T o e
a®™ %W o e T Y0 0L e N i .q..kiM..... al..
D IOBSaBAE .22 LA8m ... Nl

A trusted computing enabler

Or secure computing on someone else's computer
Not a new idea, key concepts from the 1980s

Hardware-enforced security requires:

AT,
o,

TrUSted ComPUtIng base DEPARTMENT OF DEFENSE STANDARD
Hardware secrets DEPARTMENT OF
Remote attestation TRUSTED COMPUTER

SYSTEM EVALUATION
CRITERIA

Sealed storage
Memory encryption

Trusted computing base

e CPU’s package boundary: IC, ucode, registers, cache
e Software components used for attestation (mainly QE)

APV CHCERIIC N Reflections on Trusting Trust
anyway if you use an

To what extent should one trust a statement that a program is free of Trojan

. horses? Perhaps it is more i tant to trust the le who wrote the
|nte| CPU ._) i rhaps i re importan u people w

Caveats: need a trusted dev environment for creating enclaves

Hardware secrets
Two 128-bit keys fused at production:

e Root provisioning key
e Root seal key (not known to Intel)

Measurements EGETKEY Derives)
& Metadata "

Derived keys depend on the seal key,
so Intel can't know them

Figure 5: SGX Key Hierarchy

Security limitations
Cache-timing attacks on enclave code

e Programs should be constant-time, cache-safe
(SGX won't transform insecure software into secure software)

Physical attacks on the CPU

e Need physical access, may destroy the chip
(such as laser fault injection attacks)

Microcode malicious patching

e Needs special knowledge, persistence difficult

Vulnerability research
SGX is complex, unlikely to be bug-free

Most SGX is black-box, with a large part implemented in ucode :-/

e Complex instructions like EINIT, EGETKEY: partially
documented, but all ucode; black-box testing/fuzzing?

e Platform software: Drivers, critical Intel enclaves, etc.

e SDK: Debug-mode libs available for SGX’ libc and crypto

Vulnerabilities can be disclosed at https://security-center.intel.com/

https://security-center.intel.com/

CPU bugs exist

From Intel’s 6th Generation family specs update

ENCLU[EREPORT] May Cause a #GP When
TARGETINFO.MISCSELECT is Non-Zero

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf

Bugs can be in dependencies

Example: SGX' aesm service.exe uses OpenSSL

“ASN.1 part of OpenSSL 1.0.1m 19 Mar 2015”

CVSS Score -

Confidentiality Impact Complete (Th

CVE-2016-2108 doesn't seem exploitable revealed.)

Integrity Impact Complete (Th

system prote

The ASN.1 implementation in OpenSSL before 1.0.10 and 1.0.2 before 1.0.2c allows remote attackers to execute

arbitrary code or cause a denial of service (buffer underflow and memory corruption) via an ANY field in crafted

serialized data, aka the "negative zero" issue.

Publish Date : 2016-05-04 Last Update Date : 2016-06-10

Can SGX be patched?

Yes for most of it, including trusted enclaves & microcode

1.4 Upgrading the TCB

The architecture of SGX was designed so that if
certain classes of vulnerabilities are discovered in
SGX, they can be removed by an upgrade to the
platform. This is process is referred to as TCB
Recovery. It is desirable in those cases that the new
TCB be reflected in the platform’s attestations. The

For the processor logic, a microcode update can
be released to remedy certain security issues. The

process for performing such an update is described in
the Intel IA32 Software Developers Manual [2]. The

The memory encryption crypto cannot be patched (hardware)

TCB version verified during remote attestation

Developing for SGX

Dd Enclavet - Microsoft Visual Studio

EILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS

o - 8- -
Solution Explorer
@ o-2a8B@ © &R
Search Solution Explorer (Ctrl+:) Folbs

@] Solution ‘Enclavel’ (3 projects)
4 % ConsoleApplication1
b & BExternal Dependencies
4 &l Generated Files
++ Enclavel_u.c
B Enclavel_uh
++ ProviderEnclave_u.c
B ProviderEnclave_u.h

EVVVV

Header Files
B stdafxh

B targetver.h
Resource Files
Source Files

h
Yol

++ ConsoleApplicationl.cpp
| Enclavel.edl

P Intel(R) SGX Debugger ~

v I X ProviderEnclave.edl

ANALYZE WINDOW HELP
Debug =~ Win32 - . = X N o

ProviderEnclave.cpp + X Bl d G R sERl=1)

ConsoleApplicationl.cpp

(Global Scope) - @ parse_msgl(const sgx_ra_

return 3;I
}
// compute shared secret
if(SGX_SUCCESS != sgx_ecc256_compute_shared_dhkey(&ecc_private, (sgx =c256 public t*)&msgl
{

return 4;

¥

// dont care result
sgx_ecc256_close context(ecc_context);

[/ derive smk key
derive_key(&dh_key, @, smk_key);
// compose message:

// sgx_ec256_public_t g b; /* the Endian-ness of Gb is Little-Endian */
memcpy (&msg2->g b, &ecc_public, sizeof(sgx e hlie £)):

// sgx_spid_t spid;

memcpy (&nsz2->spid, &spid, sizeof(sgx spid t));

[/ sgx_guote sign_type t quote_type; /* linkable or unlinkable Quote */

Setup

Purchase an SGX-enabled Skylake CPU (6™ gen)
Enable SGX in the BIOS (if supported)

Install MS Visual Studio Professional 2012 (30-days trial)
Install Intel Platform Software and SDK

Clear TPH

ngs to Factory Defaults

Restore Security setti

At last! Linux SDK and PSW

Released on June 25th

INTEL™ SOFTWARE GUARD EXTENSIONS FOR LINUX" 0S

Supported 0S: Ubuntu*-14.04-LTS 64-bit version

Supported Languages: C and C++

SDK and PSW source code
https://01.org/intel-softwareguard-eXtensions
https://github.com/010org/linux-sgx
https://github.com/01org/linux-sgx-driver

https://01.org/intel-softwareguard-eXtensions
https://01.org/intel-softwareguard-eXtensions
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx-driver

HTTPS download of the SDK? Yes but no
b

(:)] . . : 5
E] registrationce nter.intel.com/re

Website identification

Select file:

COMODO SECURE™ has identified this site as

registrationcenter.intel.com
® .
Intel® Software Guard Extensions SDK for
Your connection to the server is encrypted. Windows*
1.0

® Software Guard Extensions SDK for Windows®.
Pl
Intel® Software Guard Extensions SDK for Windows™
1 select product:

| Version: 10 Update 1.
(Build #)
Date posted:04 Feb 2016 Build datez18 J

Download:Intel SGX SDK for Windows v1.1.30214.81.7ip
Intel SGX SDK Release Notes for Windows 05.pd

tip://registrationcenter-download.intel.com/akdlm/irc_nas/8639/Intel%205GX%205DK%20forl%20Windows %20v1.1.30214.81.zip M

Same issue with the PSW download

Expired SDK installer cert

Observed on April 7th, 2016,
reported to Intel (now fixed)

General Advanced

General Deta Certification Path

B Certificate Information

This certificate is intended for the following purpose(s):

re came from software publisher
on after publication

Issued to: Intel(R) Corporation

Issued by: Intel BExternal B

Valid from

Il Certificate...

Platform Software (PSW)

Required to run SGX enclaves, contains:

e Drivers, service, DLLs
e Intel privileged enclaves:
o le.signed.dl1l:Launch policy enforcement
o ge.signed.dll: EPID, remote attestation
o pse.signed.dl1l: Provisioning service
0 pce.signed.dl1l: Platform certificate (?) [new in 1.6]

All PEs have ASLR and DEP enabled

PEs signed, FORCE INTEGRITY not set

Linux prebuilt binaries

https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgx

prebuilt-1.5.80.27216.tar

sha256sum on June 27th:

4d2be629%9a9%96ab9fcad0b70c068al6d448caecd9eddbedd7aef02f1c99821d127b

Prebuilt enclaves (LE, QE, PVE) with symbols

[Symbols]

g_le_mrsigner

g_wl_cert_buf
G_SERVICE_ENCLAVE_MRSIGNER
sgx_le_get_license_token_wrapper
g_wl_root_pubkey
sgx_le_init_white_list_wrapper
g_is_first_ecall

g_ife_lock

g_handler_lock

g_first_node

g_veh_cookie

SYNTHETIC_STATE
g_xsave_enabled

do_relocs

spin_acquire_lock

init_mparams
malloc_global_mutex

le_generate_license_token
le_get_license_token_wrapper

le_init_white_list

le_init_white_list_wrapper

g_dyn_entry_table
g_ecall_table

version
__intel_security_cookie
__stack_chk_guard
init_enclave
do_init_enclave
g_enclave_state
g_cpu_feature_indicator
sgx_is_within_enclave
sgx_is_outside_enclave
sgx_ocalloc

sgx_ocfree
sgx_read_rand

sgx_create_report

sgx_get_key

sgx_init_crypto_lib
sgx_rijndaell28_cmac_msg
sgx_cmacl28_init
sgx_cmacl28_update
sgx_cmac128_final
sgx_cmacl28_close
sgx_ecc256_open_context
sgx_ecc256_close_context
sgx_ecc256_create_key_pair
sgx_ecc256_check_point
sgx_ecc256_compute_shared_dhkey
sgx_ecc256_compute_shared_dhkey512
sgx_ipp_newBN
sgx_ipp_secure_free_BN
sgx_ipp_DRNGen

sgx_ecdsa_sign

https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgxprebuilt-1.5.80.27216.tar
https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgxprebuilt-1.5.80.27216.tar
https://01.org/sites/default/files/downloads/intelr-software-guard-extensions-linux-os/sgxprebuilt-1.5.80.27216.tar

Linux SDK & PSW source code

~ 170 kLoCs of C(++)

BSD License (+ limited patent license)

Trusted libc derived from OpenBSD's (and some NetBSD)
Deps: dimalloc, Protocol Buffers, STLPort, OpenSSL, etc.

Builds shared libraries and CLI tools

RELRO STACKE CAHARY M PIE RPATH RUMPATH FILE

Partial RELRO i | i ; 030 RPATH Ho RUHPAT libsgx_uae_service
V50

RELRO STACE CAHARY M= PIE RPATH RUMPATH FILE

Partial RELRO ! 1 bs0 : RUHPAT libsgx_urts_deploy
V50

RELRO STHCK CHHARY s £ FiE RPATH FUNPATH FILE

Partial RELRO i | i Ds0 Ho RPY Ho RHUMPATI libsgx_urts_sim.so
RELRO STACE. CAHARY M FIE RPATH RUHPATH FILE

Partial RELRO gl i i 0s0 Ha RPI Ho RUHPATH libsgx_urts.so

Jpi@sgx:™E

SDK

Required to develop SGX enclaves and applications.

e SGX libs: Intel-custom libc and crypto lib, sgx-specific libs,
each coming in two flavours, debug and release

e Tools:
o sgx edger8r to generate glue (C code & headers)
o0 sgx_ sign to sign enclaves with our dev key

e Example code incomplete and not fully reliable

Debugging and disassembly
Visual Studio debugger for debug-mode enclaves. GDB in Linux.
Release-mode enclaves undebuggable, like one big instruction

SGX decoded by the popular disassemblers (IDA, r2, etc.)

Process: [10172] host.exe hd 53 Thread: [6916] Main Thread

host.cpp # Disassembly +# X KeP&:igeld] sgx_tcrypto.h enclave_test.cpp enclave |

Address: test(unsigned __int64, status_t *, unsigned char *, unsigned char *)

@ Viewing Options
©0B215BC je test+66h (©B215C6h)
@OB215BE mov eax,dword ptr [retval]
©0B215C1 mov ecx,dword ptr [ms]
©6B215C4 mov dword ptr [eax],ecx
return status;
©0B215C6 mov eax,dword ptr [status]

/5
© 20B215C9 push edx

SGX license program

e Can't use the real thing easily
e Debug mode is not secure
e Release mode is secure, but needs an Intel approved
developer key (human interaction and NDA required)

Major change ahead:
Intel will enable custom Launch Enclaves in future CPUs, as
recent documents indicate, to enable custom launch policies.

Developing an enclave application
An SGX-based application is partitioned in two parts:

e Untrusted: Starts the enclave, interacts with external parties
e Trusted: Executes protected code using sealed secrets

o Its memory can’'t be accessed by any other component
e They can call each other ("ecalls" and "ocalls")

Challenges:

e Split code in trusted and untrusted domains
e \alidate untrusted inputs (the OS can’t be trusted)

Development constraints

Syscalls & some CPU instructions are not allowed

Enclaves are statically linked (all code must be measured)
Code runs in ring3 only, no kernel mode

Memory limit set during enclave signing (changing in SGX2)

Sealed storage o

e Encrypting secrets inside the enclave,
e o store them out!

How does it works?

xkcd.com

AES-GCM

IV sourced from RDRAND

Key derived from HW secrets and enclave or signer identity
Different keys for debug- and production-mode

Possible replay protection and time-based policies

Remote attestation

We want to:

e Remotely verify the enclave integrity
e Establish a secure channel client—enclave

How does it works? @

Handshake with ECDH key agreement + fresh quote

Verify enclave hash, signature, version, !debug

Verify quote with Intel Attestation Service (registration needed)
If trusted, provision secrets :)

; : Intel Key ISV Key Intel Key
service_provid
isv_app Exchange Exchange Exchange TrIS;ile .
Untrusted Trusted Trusted

2 SgX_create_pse_session

sgx_ra_proc_msg2 |trusted t,
sgx_fra_get msg3_trusted t, msg2)
2 msgl= = —
nd_receive

Image: Intel

SGX crypto zoo

RSA-3072 PKCS 1.5 SHA-256, for enclaves signatures
ECDSA over p256, SHA-256, for launch enclave policy checks
ECDH and ECDSA (p256, SHA-256), for remote key exchange
AES-128 in CTR, GCM, CMAC at various places: GCM for
sealing, CMAC for key derivation, etc.

— 128-bit security, except for RSA-3072 (= 112-bit)
Memory encryption engine (hw), cf. Gueron’s RWC’16 talk:

e New universal hash-based MAC, provably secure
e AES-CTR with custom counter block

Built-in SGX crypto lib: “somewhat limited”
Libraries sgx tcrypto.lib and sgx tcrypto opt.lib

Cryptography Library
The Intel® Software Guard Extensions Evaluation SDK includes a trusted cryptography library
named sgx tcrypto. It includes the cryptographic functions used by other trusted libraries

included in the SDK, such as the sgx tservice library. Thus, the functionality provided by this
library might be somewhat limited. If you need additional cryptographic functionality, you would
have to develop your own trusted cryptographic library.

AES (GCM, CTR), AES-CMAC, SHA-256, ECDH, ECDSA

e Secure, standard algorithms, 128-bit security
e CTR supports weak parameters (e.g. 1-bit counter)

What crypto lib?
Code from Intel’s proprietary IPP 8.2 “gold” (2014)

Only binaries available (debug-mode libs include symbols)

AES_GCMEncrypt
Encrypts a data buffer in the GCM mode.

Syntax

IppStatus ippsAES GCMEncrypt (const Ipp8u* pSrec, IppBu* pDst, int len, IppsBES GCMState*

pState);
Include Files
ippcp.h

Domain Dependencies

Headers: ippcore.h

Libraries: ippcore.lib

SGX crypto lib on Linux

Similar IPP code too, but comes with source code

e |nsdk/tlibcrypto, external/crypto px, efc.
e SGX public keys in psw/ae/data/constants/linux

Clean and safe code compared to most FOSS crypto libs

SGX_EC_COMPOSITE_BASE,
SGX_EC_COMPLICATED_BASE, ; on-;
SGX_EC_IS_ZERO_DISCRIMINANT, /# zero discriminar

SGX_EC_COMPOSITE_ORDER,
SGX_EC_INVALID_ORDER,
SGX_EC_IS_WEAK_MOV,
SGX_EC_IS_WEAK_SSA,
SGX_EC_IS_SUPER_SINGULAR,

SGX_EC_INVALID_PRIVATE_KEY, /* !(8 = P
SGX_EC_INVALID_PUBLIC_KEY, /* (order
SGX_EC_INVALID_KEY_PAIR,

SDK's AES implementation (Windows)

“To protect against software-based side channel attacks, the
crypto implementation of AES-GCM utilizes AES-NI, which is
Immune to software-based side channel attacks.”

(SDK documentation)

e AES-NI used for the rounds (AESENC, AESDEC)

e Not for the key schedule (n0o AESKEYGENASSIST)

e Table-based implementation instead with defenses
against cache-timing attacks

SDK's AES implementation (Linux)

No AES-NI, textbook implementation instead (slower)
S-box = 256-byte table with basic cache-timing mitigation

__INLINE Ipp8u getSboxValue(Ipp32u x)

Ipp32u t[sizeof(Ri1jEncSbox)/CACHE_LINE_SIZE];
Ipp8u* SboxEntry = RijEncSbox +x%CACHE_LINE_SIZE;
Ipp32u 1i;
for(i= ; i<sizeof(RijEncSbox)/CACHE_LINE_SIZE; i+= , SboxEntry += *CACHE_LINE_SIZE) {

t[1] = SboxEntry[CACHE_LINE_SIZE*];
t[i+] = SboxEntry[CACHE_LINE_SIZE*];
t[i+] = SboxEntry[CACHE_LINE_SIZE*];
t[1+] = SboxEntry[CACHE_LINE_SIZE*];

}
return (Ipp8u)t[x/CACHE_LINE_SIZE];

However, AES in prebuilt enclaves to use AES-NI

No weak randomness in SGX’ libc?
SGX' libc does not support the weak rand () and srand ()

Only RDRAND-based PRNG (not RDSEED):

sgx status t sgx read rand(
unsigned char *rand,
size t length in bytes

) ;

‘there are some circumstances when the RDRAND
instruction may fail. When this happens, the recommendation
Is to try again up to ten times (...)” (Enclave’s writer guide)

sgx read rand implements the 10x retry

#define _RDRAND_RETRY_TIMES 10 public do_rdrand

/" do_rdrand proc near
B R S s mou edx, 0Ah

* extern "C" uint32_t do_rdrand(uint32_t *rand);

* return value: @rdrand_retry: ; CODE XREF
¥ non-zero: rdrand succeeded rdrand eax

. zero: rdrand failed jb short @rdrand_return

o i jnz short @rdrand_retry

DECLARE_LOCAL_FUNC do_rdrand Xor rax, rax
mov $_RDRAND_RETRY_TIMES, %ecx
.Lrdrand_retry:

.byte @x0F, @xC7, OxF@ /* rdrand %eax */

jc .Lrdrand_return @rdrand_return: . CODE XREF
dec ¥ecx

jnz .Lrdrand_retry

xor xax, X¥xax

ret

do_rdrand

.Lrdrand_return:
#ifdef LINUX3Z

mowv SE_WORDSIZE(%esp), %ecx
#else

mowv %rdi, ¥rcx
#endif

mov 1 Yeax, (Excx)

mowv $1, %xax

ret

sdk/trts/linux/trts pic.S sgx _trts.lib:trts pic.ob]

Crypto DoS warning

RDRAND / RDSEED are the only non-SGX SGX-enabled
instructions that an hypervisor can force to cause a VM exit

Can be used to force the use of weaker randomness

3.6.2 RDRAND and RDSEED Instructions

These instructions may cause a VM exit if the "RDRAND exiting” VM-execution control is 1. Unlike other instructions
that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 6.5.5, any VM exit orig-
inating on an instruction boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a VMM
receives a VM exit due to an attempt to execute either of these instructions determines (by that bit) that the execu-
tion was inside an enclave, it can do either of two things. It can clear the "RDRAND exiting” VM-execution control

and execute VMRESUME; this will result in the enclave executing RDRAND or RDSEED again, and this time a VM
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set "RDRAND exiting” to 1.

Beware weak crypto
Toy crypto lib in /sdk/sample libcrypto/

/*
* This sample cryptopgraphy library was intended to be used in a limited
* manner. Its cryptographic strength is very weak. It should not be
* used by any production code. Its scope is limited to assist in the
* development of the remote attestation sample application.

**/

The quoting enclave (QE)

_Attested Enclave ;

Critical for remote attestation: Ese;m.{me;mh _
1. Verifies an enclave's measurement — :Dﬂ
(create by the EREPORT instruction) QE_ | iﬂgw
2. Signs it as EPID group member " H Rﬁ]
3. Create a QUOTE: an attestation el (S | P
verifiable by third parties | Encyption | |

Uses an undocumented custom crypto scheme...

Quoting enclave's crypto

pubkey K member privkey

N S

RSA-2048- AES-128- . .
OAEP GCM | “signatureand ~, | EPID-sign [<«— REPORT

o revocarton info \

4”7 “Af"““"" “""'-“'-I

: ; I 1st

SHA-256 ; | SHA-256 '«-- nonce
: ciphertext I,
iand tag

' I
hashed 5 C;pherfext e 5 3r d |\ metadata (2nd)
4 :

metadata

1! A.'::

Random 16-byte key and 12-byte |V
Details in https://github.com/kudelskisecurity/sgxfun

https://github.com/kudelskisecurity/sgxfun

Quoting enclave S crypto

pubkey member privkey
encrypted b

RSA-2048-
OAEP

- 1
~\8rd | metadata (2nd)

' 1 Tst
i SHA-256 '=-- nonce

Hybrid encryptlon IND CCA (OAEP) + IND CPA (GCM)
SHA-256(K) leaks info on K, enables time-memory tradeoffs

No forward secrecy (compromised RSA key reveals prev. Ks)
RSA-2048 ~ 90-bit security level

Enhanced Privacy ID anonymous group signatures

Signatures verified to N Issuer. holds the
belong to the group, hiding intel“ "master key", can grant

the member that signed access to the group

Group = CPUs of same

SO

@ |

Members sign an Verifier ensures that an
enclave's measurement enclave does run on a
anonymously trusted SGX platform

epid_random_func
EPID implementation
epidMember_createCompressed
. . epidMember_delete
N Ot |n m |CrOCOde’ too Com pIeX epidMember_registerBaseMame
epidMember_computePreSignature
epidMember_join
N I SGX I. b b I h QE d PVE b- 1 epidMember_isPrivKeyValid
Ot In I S, Ut In t e an Inarles epidMember_signMessagePartial
epidMember_checkSigRLHeader

epidMember_nrProve

Undocumented implementation details:

epidMember_signMessage
deleteEPIDZParams

newkEPIDZ2ParamsFromDctStr

e Scheme from https://eprint.iacr.org/2009/095
e Barretto-Naehrig curve, optimal Ate pairing
e Code allegedly based on https://eprint.iacr.org/2010/354

Pubkey and parameters provided by Intel Attestation Service (IAS)

https://eprint.iacr.org/2009/095
https://eprint.iacr.org/2010/354

Our projects

SGX and crypto applications

SGX lets you use the CPU as a hardware key store to easily
realize complex functionalities such as:

Fully homomorphic encryption IT;SINOTICHEATING
Multiparty computation -
Secure remote storage
Proxy reencryption
Secure delegation
Encrypted search

Reencryption
Transform ciphertext Enc(K1, M) into ciphertext Enc(K2, M):

e Without exposing plaintext nor keys to the OS
e Symmetric keys only, no private key escrow!
e Sealed keys and policies:
o Which keys can | encrypt to/from?
o Which clients can use my key? When does it expire?

Our PoC: multi-client, single-server

https.//github.com/kudelskisecurity/sgx-reencrypt

https://github.com/kudelskisecurity/sgx-reencrypt
https://github.com/kudelskisecurity/sgx-reencrypt

Reencryption security
Goal: leak no info on plaintext, secret keys, key IDs, policies

Limitations:

e OS may tamper with sealed blobs, but the enclave will notice it

e No trusted clock: OS can bypass the key expiration, cannot
Implement reliable time-based policies

e Sealed keys are fetched on every reencrypt request: OS can
see which pairs are used together

=

request = (ClientlD, nonce, kIDO, kID1, CO)

box = crypto box(pk-enc, request)
crypto open(box)

If policy check fails: response = nonce || || CO
If (P = Dec(keyO, CO)) fails: response = nonce || || CO
response = nonce || OK || Enc(key1, P)

box = crypto box(pk-cli, response)
crypto open(box) —

(CO in error responses to make them indistinguishable from legit responses)

Reencryption implementation

e Curve25519 key agreement, Salsa20-Poly1305 auth'd enc.
o SGX'd TweetNaCl: compact minimal standalone crypto lib
o Mutual authentication client - enclave

e No remote attestation implemented:
0 generate keypair ina trusted environment

e Interfaces (NaCl boxed request + response):
0 register key: seals a new key + policy, returns key ID
o reencrypt: given a ciphertext and 2 key IDs, produces a
new ciphertext if the policy is valid, errs otherwise

Command-line tools
At https://github.com/kudelskisecurity/sgxfun

e parse enclave.py extracts metadata from an enclave:
signer and security attributes, build mode, entry points, etc.

e parse quote.py extracts information from a quote: EPID
group ID, key hash, ISV version, encrypted signature, etc.

® parse sealed.py extracts information from sealed blobs:
key policy, payload size, additional authenticated data, etc.

DEMO!

https://github.com/kudelskisecurity/sgxfun

Conclusion

Black Hat sound bytes

e Intel® SGX allows you to run trusted code on a remote
untrusted OS/hypervisor, which has many cool applications

e Many complex software and crypto components need to be
secure so that SGX lives up to its promises

e \We are not disclosing major security issues, but presenting
undocumented aspects of the SGX architecture

Open questions

How bad/exploitable will be bugs in SGX?

Will cloud providers offer SGX-enabled services?

Will board manufacturers enable custom LEs in their BIOS?
Will open-source firmware (such as coreboot) support SGX?
Will SGX3 use post-quantum crypto? :-)

Main references

Intel's official SGX-related documentation (800+ pages)
o Intel Software Guard Extensions Programming Reference, first-stop for SGX
o SDK User Guide, SGX SDK API reference
o Intel’'s Enclave Writer's Guide
Baumann et al, Shielding Applications from an Untrusted Cloud with Haven, USENIX 2014
Beekman, https://github.com/jethrogb/sgx-utils
Costan & Devadas, Intel SGX Explained, eprint 2016/086
Gueron, Intel SGX Memory Encryption Engine, Real-World Crypto 2016
Gueron, A Memory Encryption Engine Suitable for General Purpose Processors, eprint 2016/204
Hoekstra et al, Using Innovative Instructions to Create Trustworthy Software Solutions, HASP 2013
lonescu, Intel SGX Enclave Support in Windows 10 Fall Update (Threshold 2)
NCC Group, SGX: A Researcher’s Primer
Rutkowska, Intel x86 considered harmful
Rutkowska, Thoughts on Intel’'s upcoming Software Guard Extensions (parts 1 and 2)
Shih et al, S-NFV: Securing NFV states by using SGX, SDN-NFVSec 2016
Shinde et al, Preventing Your Faults from Telling Your Secrets: Defenses against Pigeonhole Attacks, arXiv
1506.04832
Schuhster et al, VC3: Trustworthy Data Analytics in the Cloud using SGX, IEEE S&P 2015
e Lietal, MiniBox: A Two-Way Sandbox for x86 Native Code, 2014

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://github.com/jethrogb/sgx-utils

Prior works
Some stuff already published, mostly without code:

MIT’s Costan & Devadas “Intel SGX Explained” (essential!)
Microsoft’'s Haven about SGXing full apps (influenced SGX2)
Microsoft's VC3: SGXed Hadoop/MapReduce

CMU & Google’s 2-way sandbox

Birr-Pixton’s password storage (first PoC released publicly?)
Juels et al.'s Town Crier authenticated data feeds

Thank you!

Slides and white paper at
https://github.com/kudelskisecurity/sgxfun

@veorg @iamcorso
https://kudelskisecurity.com

https://github.com/kudelskisecurity/sgxfun
https://github.com/kudelskisecurity/sgxfun
https://kudelskisecurity.com
https://kudelskisecurity.com

