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AGENDA
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Attack	surface	and	liabilities

Bugs,	alternative	features,	and	demos

Conclusions
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SIGNAL
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THE	SIGNAL	APPS
Mobile	apps	for	messaging	&	audio/video	calls

By	Open	Whisper	Systems	(Moxie	Marlinspike	et	al.)

Formerly	known	as	"TextSecure",	"RedPhone"

Android,	iOS,	and	Chrome	Desktop	app

6



TRUSTED	TOOL
Endorsed	by	Snowden	and	other	opinion	leaders

Popular	among	activists	in	the	US	and	abroad

Minimal	data	collection	from	Signal	servers
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SECURITY	PROMISES
Solid	end-to-end	encryption,	defending	against

Active	network	attackers
Client	and	server	compromises
Traffic	analysis	(partially)

High	assurance	software,	with

Code	perceived	as	high-quality
No	major	security	issue	ever
Reproducible	Android	builds
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SIGNAL	IS	MORE	THAN	SIGNAL
Core	crypto	"libsignal"	licensed	to	and	integrated	in

Facebook	Messenger's	"Secret	Conversations"
mode

Facebook	WhatsApp	default	encryption

Google	Allo's	"Incognito"	mode
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KEY	AGREEMENT:	X3DH

Combines	4	key	pairs:	long-term	and	ephemeral

One-time	prekeys	trick,	to	simulate	online-ness

Forward-secret,	resilient	to	malicious	servers

Out-of-band	identity	verification	necessary 11



SESSION	KEYS:	DOUBLE
RATCHET

Protocol	to	compute	message-unique	keys:

New	Diffie-Hellman	for	every	first	message	from	a
party

"Key	:=	Hash(Key)"	for	consecutive	messages

Past	and	future	messages	safe	if	present	key	known

Attachments	have	identical	protection
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THE	"SIGNAL	PROTOCOL"
=	X3DH	and	double	ratchet	as	implemented	in	Signal

(Moxie	Marlinspike,	messaging@moderncrypto.org	ML,	30.11.16)
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WAIT	–	WAS	THAT	ALL?
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UNSPECIFIED
a.k.a.	"code	is	documentation":

How	are	attachments	encrypted?
How	are	audio	and	video	streams	encrypted?
Are	they	fully	integrity	checked?
How	does	group	messaging	work?

etc.
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NETWORK	ARCHITECTURE

Attachments	stored	on	S3,	at	e.g.

Messaging	servers	run	by	OWS

https://whispersystems-textsecure-attachments.s3.amazonaws.com

16

https://whispersystems-textsecure-attachments.s3.amazonaws.com/


CODE	BASE	(CLIENT-SIDE)
Main	repos	from	 :

libsignal-service-java	(~20kloc	Java)

libsignal-protocol-java	(~20kloc	Java)

Signal-Android	(JNI	+	~60kloc	Java)

libsignal-protocol-c	(~30kloc	C)

SignalServiceKit	(~20kloc	Obj-C)

Signal-iOS	(~25kloc	Obj-C)

https://github.com/whisperSystems
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https://github.com/whisperSystems


ANDROID	APP	SOFTWARE	STACK

	 	

javax.crypto	
java.security	
Curve25519
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PREVIOUS	RESEARCH
No	public	record	of	major	security	bug

Minor	security	issues	fixed	(see	tracker)

Formal	analysis	of	the	protocol	(Cohn-Gordon	et	al.)

Key	compromise	impersonation,	replay	(Kobeissi	et
al.)
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ATTACK	SURFACE
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THE	NETWORK	ATTACKER

Goal:	compromise	secrecy,	impersonate	legit	peer

Can	inject/modify	messages	within	X3DH,	double
ratchet

Can	sabotage	prekeys	(invalid	value	or	format,	etc.) 21



THE	MALICIOUS	PEER

Goal:	own	other	peer(s)

Got	keys,	can	trigger/abuse	parsing	of	text/media
data

More	powerful	than	the	network	attacker

Often	overlooked
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DEPENDENCIES
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THIRD-PARTY	CODE
Android:	500kloc	of	C	etc.	(WebRTC,	OpenSSL)

iOS:	~	60kloc	of	Obj-C	and	C	(speex	codec,	DSP,	etc.)

Both:	OS	components	to	decode	images,	low-level
stuff

Crypto:	curve25519-donna.c,	Java	SDK	crypto
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MISSING	MITIGATIONS	AND
INSECURE	DEFAULTS

No	sandboxing	on	Android	nor	iOS

Hardware	keystore	not	used	on	Android

Parsing	of	media	files	from	untrusted	sources

Dependency	on	iOS/Android	media	libraries
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MORE	ATTACK	SURFACE?
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USER	RESPONSIBILITIES
Check	fingerprints,	don't	jailbreak/root,	OPSEC,	etc.
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UNREALISTIC	SECURITY	MODEL?
"Break-in	recovery"	protects	against	an	attacker	that
extracts	temporary	keys...	but	only	certain	keys:

Security	recovered	if	a	"KDF	key"	leak

Recovery	impossible	if	a	"root	KDF	key"	leaks
																		(Can	silently	MitM,	as	Steve	Thomas
tweeted)

But	keys	are	all	in	the	same	memory	region...

Does	this	model	make	any	sense	on	mobile?
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BUGS	AND
"FEATURES"
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METHODOLOGY
Multi-level	holistic	approach	to	bug	discovery:

Machine	learning-guided	fuzzing

Cloud-based	parallel	concolic	execution

State-machine	meta-model	formal	verification

Differential	cryptanalysis	using	syscalls	as	side
channels

Blockchain	smart	contracts	to	record	vulns	found

(Releasing	our	tool,	free	for	commercial	use	only) 30



ACTUAL	METHODOLOGY
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SERIOUSLY
No	rigorous	process

No	automation	or	fuzzing

We	only	superficially	reviewed:

Obvious	user	input,	protocol	edge	cases
Common	software	bug	classes
Client	code,	not	server	code
Messaging	protocol/code,	not	calling
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TOOLSET
iPhones,	rooted	Androids,	Chrome	extension

Signal	service	CLI	
(to	control	what	is	sent	to	the	server/peers)

Python	MitM'ing	tools

https://github.com/AsamK/signal-cli
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MAC	BYPASS	(ANDROID)

64-bit	(long)	file.length()	cast	to	32-bit	(int)

file.length()	=	X	+	4GB	=>	remainingData	=	X

MAC	computed	over	first	X	bytes	=>	extra	4GB	can	be
set	to	arbitrary	values	and	pass	the	MAC	verification
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MAC	BYPASS:	BASIC
EXPLOITATION

MitM	from	S3,	where	attachments	are	stored:

Await	a	request	to	fetch	an	attachment

Pad	the	attachment	with	4GB	+	use	HTTP
compression

=>	Data	attached	to	original	data	unnoticed

W/AttachmentDownloadJob(10484):
Caused by: javax.crypto.BadPaddingException: EVP_CipherFinal_ex
  at com.android.org.conscrypt.NativeCrypto.EVP_CipherFinal_ex(Native Method)
  at com.android.org.conscrypt.OpenSSLCipher.doFinalInternal(OpenSSLCipher.java:430)
  at com.android.org.conscrypt.OpenSSLCipher.engineDoFinal(OpenSSLCipher.java:490)
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MAC	BYPASS:	MORE
EXPLOITATION

Problem:	decryption	key	is	unknown,	so	can't	forge
meaningful	ciphertext	blocks..

Or	can	we?	Exploit	malleability	of	CBC	mode

CBC	decryption:	P[i]=Dec(C[i])⊕	P[i-1]

Know/guess	one	Dec(C[i]),	choose	P[i-1]

Control	every	other	plaintext	block!

36



(Image	stolen	from	another	talk) 37



MAC	BYPASS:	DEMO
Blind	message	repetition

Playback	isn't	supported	on	this	device.

Signal	Messenger	-	MAC	Bypass	-	Repeating	Audio

0:00	/	0:23
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https://www.youtube.com/watch?v=c_8F7m2BUyQ


MAC	BYPASS
Known	plaintext	forgery

Playback	isn't	supported	on	this	device.

Signal	Messenger	-	MAC	Bypass	-	Tamper	A	Voice	Message

0:00	/	1:10
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https://www.youtube.com/watch?v=HkCW4winfSw


NO	PUBLIC	KEY	VALIDATION
ECDH:	private-key	×	public-key	=	shared-secret

If	public-key	=	0,	then	shared-secret	=	0

Such	invalid	public	keys	should	not	be	accepted

Signal	accepts	public-key	=	0
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IMPACT	OF	INVALID	KEYS
You	can	force	all	peers	to	send	you	messages
encrypted	using	an	all-zero	key	(thus,	essentially	in
clear	text)

Deniability	("PRNG	bug!")

Kills	break-in	recovery
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C	LIB	CALLBACKS
C	libsignal	users	need	to	define	callbacks	such	as

encrypt_func(),	used	to	encrypt	stuff	(pretty
important)

You	need	to	define	the	callbacks,	but	libsignal	tries	to

int signal_encrypt(signal_context *context,
        signal_buffer **output,
        int cipher,
        const uint8_t *key, size_t key_len,
        const uint8_t *iv, size_t iv_len,
        const uint8_t *plaintext, size_t plaintext_len)
{
    assert(context);
    assert(context->crypto_provider.encrypt_func);
    return context->crypto_provider.encrypt_func(
            output, cipher, key, key_len, iv, iv_len,
            plaintext, plaintext_len,
            context->crypto_provider.user_data);
}
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C	LIB	CALLBACKS
Unit	tests	provide	example	implementations,	for

example	to	use	OpenSSL	to	encrypt	stuff	in
encrypt_func()

int test_encrypt(signal_buffer **output,
        int cipher,
        const uint8_t *key, size_t key_len,
        const uint8_t *iv, size_t iv_len,
        const uint8_t *plaintext, size_t plaintext_len,
        void *user_data)
{
    int result = 0;
    uint8_t *out_buf = 0;

    const EVP_CIPHER *evp_cipher = aes_cipher(cipher, key_len);
    if(!evp_cipher) {
        fprintf(stderr, "invalid AES mode or key size: %zu\n", key_len);
        return SG_ERR_UNKNOWN;
    } 43



BUGS	IN	EXAMPLE	CALLBACKS
Bugs	in	test_encrypt():

Type	confusion	=>	crash	for	certain	messages	(64-
bit)

Integer	overflow	+	potential	heap	overflow	(32-bit)
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RTP	PACKETS	UNDERFLOW
When	packetLen < sizeof(RtpHeader),	payloadLen

is	negative	=>	out-of-bound	read	in	HMAC

Seems	unexploitable...

RtpPacket* RtpAudioReceiver::receive(char* encodedData, int encodedDataLen) {
  int received = recv(socketFd, encodedData, encodedDataLen, 0);

  if (received == -1) {
    __android_log_print(ANDROID_LOG_WARN, TAG, "recv() failed!");
    return NULL;
  }

  RtpPacket *packet = new RtpPacket(encodedData, received);
...
RtpPacket::RtpPacket(char* packetBuf, int packetLen) {
  packet     = (char*)malloc(packetLen);
  // 1. INTEGER UNDERFLOW
  payloadLen = packetLen - sizeof(RtpHeader); 
  memcpy(packet, packetBuf, packetLen);
}
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CRASHY	IMAGES
Signal	uses	libskia	for	media	decoding

Bugs	in	libskia...

Can't	disable	media	files	parsing	in	Signal

What	can	wrong?
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DEMO	CRASH

Playback	isn't	supported	on	this	device.

Signal	bootloop	(reboot	root-cause	NOT	in	Signal)

0:00	/	0:45
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https://www.youtube.com/watch?v=naLXw_N5ES8


MESSAGE	REPLAY
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THE	EVERLASTING	PREKEY
Key	agreement	uses	one-time	prekeys

Except	for	the	"last-resort"	key

Fallback	mechanism	against	DoS

package org.whispersystems.libsignal.util;

public class Medium {
  public static int MAX_VALUE = 0xFFFFFF;
}

  public byte[] decrypt(PreKeySignalMessage ciphertext, DecryptionCallback callback)
      throws DuplicateMessageException, LegacyMessageException, InvalidMessageException,
             InvalidKeyIdException, InvalidKeyException, UntrustedIdentityException
  {
...
      if (unsignedPreKeyId.isPresent()) { 49



X3DH	KEY	AGREEMENT
Alice	fetches	Bob's	id	key	and	prekey	from	server...

Computes	shared	secret,	encrypts	a	message,	sends
with	pubkeys...

Bob	computes	shared	secret,	decrypts	the
message...

Prekey	removed	from	the	server,	except	if	it's	the
last	resort	key	(after	all	prekeys	have	been	used)
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PREKEY	MESSAGE	STRUCTURE

Message	is	a	bundle	of	a	PreKeySignalMessage	and	an
encrypted	message	(WhisperKeyMessage)
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PREKEY	MESSAGE	INTEGRITY

Only	the	encrypted	part	is	integrity	checked!
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DEFENSES	AGAINST	REPLAY
Bob	won't	do	new	key	agreement	for	known	base
keys

Create	fake	session	states	and	exhaust	the	state
limit

A	valid	ciphertext	is	needed	(with	a	valid	MAC)

Piggyback	on	messages	from	a	different	session
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WHY	REPLAY	IS	POSSIBLE
Key	exchange	and	ciphertexts	can	be	replayed

because:

Bob	does	not	check	if	the	encrypted	message
belongs	to	the	prekey	part	of	the	message

Prekey	messages	are	not	integrity	checked,	so	a
MiTM	can	create	arbitrary	session	states

Limit	of	40	session	states,	old	ones	will	be	purged
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HOW	TO	REPLAY
1.	 Exhaust	Bob's	prekeys	(e.g.	"evil	backend"	deletes

normal	prekeys)
2.	 Let	Alice	create	a	session	with	the	last	resort	key
3.	 Record	Alice's	first	message(s)
4.	 Replay!	(even	after	Bob	computes	new	prekeys)
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REPLAY	DEMO
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https://asciinema.org/a/ag7h4mryap9169dutk33htc9b


AUDIO	FILE	SERVER	ON
LOCALHOST

If	you	play	an	audio	file	that	was	sent	to	you	an
open	HTTP-Server	is	started	on	localhost

Random	16	byte	URI,	random	port

Not	a	direct	problem	(unless	port	and	URI	info	leaks)
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MORE?

Looked	at	it	yesterday	morning...	�

Greater	risk	of	"friendly	fire"	(©	Justin)
Can	coerce	peers	into	using	K	≡	0
?
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CONCLUSIONS
Signal	has	a	huge	code	base,	underanalyzed

Our	work:	low	effort,	likely	missed	many	things

Expecting	more	logic	bugs,	protocol	edge	cases,	etc.

Secure	messengers	need	better	mitigation	and
isolation
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