
HUNTING	FOR	VULNERABILITIES	IN
SIGNAL

JP	Aumasson	&	Markus	Vervier

					

1



WHOIS
JP	(@veorq)
Principal	researcher	@	Kudelski	Security
Speaks	French
Crypto	guy

Markus	(@marver)
Head	of	research	@	x41	D-Sec
Speaks	German
Not	CISSP

2



PROPS
This	BH	US	2016	boring	talk
Open	Whisper	Systems
Eric	Sesterhenn
Hanno	Boeck

3



AGENDA
Signal	internals,	security	promises

Attack	surface	and	liabilities

Bugs,	alternative	features,	and	demos

Conclusions

4



SIGNAL

5



THE	SIGNAL	APPS
Mobile	apps	for	messaging	&	audio/video	calls

By	Open	Whisper	Systems	(Moxie	Marlinspike	et	al.)

Formerly	known	as	"TextSecure",	"RedPhone"

Android,	iOS,	and	Chrome	Desktop	app

6



TRUSTED	TOOL
Endorsed	by	Snowden	and	other	opinion	leaders

Popular	among	activists	in	the	US	and	abroad

Minimal	data	collection	from	Signal	servers

7



SECURITY	PROMISES
Solid	end-to-end	encryption,	defending	against

Active	network	attackers
Client	and	server	compromises
Traffic	analysis	(partially)

High	assurance	software,	with

Code	perceived	as	high-quality
No	major	security	issue	ever
Reproducible	Android	builds

8



SIGNAL	IS	MORE	THAN	SIGNAL
Core	crypto	"libsignal"	licensed	to	and	integrated	in

Facebook	Messenger's	"Secret	Conversations"
mode

Facebook	WhatsApp	default	encryption

Google	Allo's	"Incognito"	mode

9



10



KEY	AGREEMENT:	X3DH

Combines	4	key	pairs:	long-term	and	ephemeral

One-time	prekeys	trick,	to	simulate	online-ness

Forward-secret,	resilient	to	malicious	servers

Out-of-band	identity	verification	necessary 11



SESSION	KEYS:	DOUBLE
RATCHET

Protocol	to	compute	message-unique	keys:

New	Diffie-Hellman	for	every	first	message	from	a
party

"Key	:=	Hash(Key)"	for	consecutive	messages

Past	and	future	messages	safe	if	present	key	known

Attachments	have	identical	protection

12



THE	"SIGNAL	PROTOCOL"
=	X3DH	and	double	ratchet	as	implemented	in	Signal

(Moxie	Marlinspike,	messaging@moderncrypto.org	ML,	30.11.16)

13



WAIT	–	WAS	THAT	ALL?

14



UNSPECIFIED
a.k.a.	"code	is	documentation":

How	are	attachments	encrypted?
How	are	audio	and	video	streams	encrypted?
Are	they	fully	integrity	checked?
How	does	group	messaging	work?

etc.

15



NETWORK	ARCHITECTURE

Attachments	stored	on	S3,	at	e.g.

Messaging	servers	run	by	OWS

https://whispersystems-textsecure-attachments.s3.amazonaws.com

16

https://whispersystems-textsecure-attachments.s3.amazonaws.com/


CODE	BASE	(CLIENT-SIDE)
Main	repos	from	 :

libsignal-service-java	(~20kloc	Java)

libsignal-protocol-java	(~20kloc	Java)

Signal-Android	(JNI	+	~60kloc	Java)

libsignal-protocol-c	(~30kloc	C)

SignalServiceKit	(~20kloc	Obj-C)

Signal-iOS	(~25kloc	Obj-C)

https://github.com/whisperSystems

17

https://github.com/whisperSystems


ANDROID	APP	SOFTWARE	STACK

	 	

javax.crypto	
java.security	
Curve25519

18



PREVIOUS	RESEARCH
No	public	record	of	major	security	bug

Minor	security	issues	fixed	(see	tracker)

Formal	analysis	of	the	protocol	(Cohn-Gordon	et	al.)

Key	compromise	impersonation,	replay	(Kobeissi	et
al.)

19



ATTACK	SURFACE

20



THE	NETWORK	ATTACKER

Goal:	compromise	secrecy,	impersonate	legit	peer

Can	inject/modify	messages	within	X3DH,	double
ratchet

Can	sabotage	prekeys	(invalid	value	or	format,	etc.) 21



THE	MALICIOUS	PEER

Goal:	own	other	peer(s)

Got	keys,	can	trigger/abuse	parsing	of	text/media
data

More	powerful	than	the	network	attacker

Often	overlooked
22



DEPENDENCIES

23



THIRD-PARTY	CODE
Android:	500kloc	of	C	etc.	(WebRTC,	OpenSSL)

iOS:	~	60kloc	of	Obj-C	and	C	(speex	codec,	DSP,	etc.)

Both:	OS	components	to	decode	images,	low-level
stuff

Crypto:	curve25519-donna.c,	Java	SDK	crypto

24



MISSING	MITIGATIONS	AND
INSECURE	DEFAULTS

No	sandboxing	on	Android	nor	iOS

Hardware	keystore	not	used	on	Android

Parsing	of	media	files	from	untrusted	sources

Dependency	on	iOS/Android	media	libraries

25



MORE	ATTACK	SURFACE?

26



USER	RESPONSIBILITIES
Check	fingerprints,	don't	jailbreak/root,	OPSEC,	etc.

27



UNREALISTIC	SECURITY	MODEL?
"Break-in	recovery"	protects	against	an	attacker	that
extracts	temporary	keys...	but	only	certain	keys:

Security	recovered	if	a	"KDF	key"	leak

Recovery	impossible	if	a	"root	KDF	key"	leaks
																		(Can	silently	MitM,	as	Steve	Thomas
tweeted)

But	keys	are	all	in	the	same	memory	region...

Does	this	model	make	any	sense	on	mobile?
28



BUGS	AND
"FEATURES"

29



METHODOLOGY
Multi-level	holistic	approach	to	bug	discovery:

Machine	learning-guided	fuzzing

Cloud-based	parallel	concolic	execution

State-machine	meta-model	formal	verification

Differential	cryptanalysis	using	syscalls	as	side
channels

Blockchain	smart	contracts	to	record	vulns	found

(Releasing	our	tool,	free	for	commercial	use	only) 30



ACTUAL	METHODOLOGY

31



SERIOUSLY
No	rigorous	process

No	automation	or	fuzzing

We	only	superficially	reviewed:

Obvious	user	input,	protocol	edge	cases
Common	software	bug	classes
Client	code,	not	server	code
Messaging	protocol/code,	not	calling

32



TOOLSET
iPhones,	rooted	Androids,	Chrome	extension

Signal	service	CLI	
(to	control	what	is	sent	to	the	server/peers)

Python	MitM'ing	tools

https://github.com/AsamK/signal-cli

33

https://github.com/AsamK/signal-cli


MAC	BYPASS	(ANDROID)

64-bit	(long)	file.length()	cast	to	32-bit	(int)

file.length()	=	X	+	4GB	=>	remainingData	=	X

MAC	computed	over	first	X	bytes	=>	extra	4GB	can	be
set	to	arbitrary	values	and	pass	the	MAC	verification

34



MAC	BYPASS:	BASIC
EXPLOITATION

MitM	from	S3,	where	attachments	are	stored:

Await	a	request	to	fetch	an	attachment

Pad	the	attachment	with	4GB	+	use	HTTP
compression

=>	Data	attached	to	original	data	unnoticed

W/AttachmentDownloadJob(10484):
Caused by: javax.crypto.BadPaddingException: EVP_CipherFinal_ex
  at com.android.org.conscrypt.NativeCrypto.EVP_CipherFinal_ex(Native Method)
  at com.android.org.conscrypt.OpenSSLCipher.doFinalInternal(OpenSSLCipher.java:430)
  at com.android.org.conscrypt.OpenSSLCipher.engineDoFinal(OpenSSLCipher.java:490)

35



MAC	BYPASS:	MORE
EXPLOITATION

Problem:	decryption	key	is	unknown,	so	can't	forge
meaningful	ciphertext	blocks..

Or	can	we?	Exploit	malleability	of	CBC	mode

CBC	decryption:	P[i]=Dec(C[i])⊕	P[i-1]

Know/guess	one	Dec(C[i]),	choose	P[i-1]

Control	every	other	plaintext	block!

36



(Image	stolen	from	another	talk) 37



MAC	BYPASS:	DEMO
Blind	message	repetition

Playback	isn't	supported	on	this	device.

Signal	Messenger	-	MAC	Bypass	-	Repeating	Audio

0:00	/	0:23

38

https://www.youtube.com/watch?v=c_8F7m2BUyQ


MAC	BYPASS
Known	plaintext	forgery

Playback	isn't	supported	on	this	device.

Signal	Messenger	-	MAC	Bypass	-	Tamper	A	Voice	Message

0:00	/	1:10

39

https://www.youtube.com/watch?v=HkCW4winfSw


NO	PUBLIC	KEY	VALIDATION
ECDH:	private-key	×	public-key	=	shared-secret

If	public-key	=	0,	then	shared-secret	=	0

Such	invalid	public	keys	should	not	be	accepted

Signal	accepts	public-key	=	0

40



IMPACT	OF	INVALID	KEYS
You	can	force	all	peers	to	send	you	messages
encrypted	using	an	all-zero	key	(thus,	essentially	in
clear	text)

Deniability	("PRNG	bug!")

Kills	break-in	recovery

41



C	LIB	CALLBACKS
C	libsignal	users	need	to	define	callbacks	such	as

encrypt_func(),	used	to	encrypt	stuff	(pretty
important)

You	need	to	define	the	callbacks,	but	libsignal	tries	to

int signal_encrypt(signal_context *context,
        signal_buffer **output,
        int cipher,
        const uint8_t *key, size_t key_len,
        const uint8_t *iv, size_t iv_len,
        const uint8_t *plaintext, size_t plaintext_len)
{
    assert(context);
    assert(context->crypto_provider.encrypt_func);
    return context->crypto_provider.encrypt_func(
            output, cipher, key, key_len, iv, iv_len,
            plaintext, plaintext_len,
            context->crypto_provider.user_data);
}

42



C	LIB	CALLBACKS
Unit	tests	provide	example	implementations,	for

example	to	use	OpenSSL	to	encrypt	stuff	in
encrypt_func()

int test_encrypt(signal_buffer **output,
        int cipher,
        const uint8_t *key, size_t key_len,
        const uint8_t *iv, size_t iv_len,
        const uint8_t *plaintext, size_t plaintext_len,
        void *user_data)
{
    int result = 0;
    uint8_t *out_buf = 0;

    const EVP_CIPHER *evp_cipher = aes_cipher(cipher, key_len);
    if(!evp_cipher) {
        fprintf(stderr, "invalid AES mode or key size: %zu\n", key_len);
        return SG_ERR_UNKNOWN;
    } 43



BUGS	IN	EXAMPLE	CALLBACKS
Bugs	in	test_encrypt():

Type	confusion	=>	crash	for	certain	messages	(64-
bit)

Integer	overflow	+	potential	heap	overflow	(32-bit)

44



RTP	PACKETS	UNDERFLOW
When	packetLen < sizeof(RtpHeader),	payloadLen

is	negative	=>	out-of-bound	read	in	HMAC

Seems	unexploitable...

RtpPacket* RtpAudioReceiver::receive(char* encodedData, int encodedDataLen) {
  int received = recv(socketFd, encodedData, encodedDataLen, 0);

  if (received == -1) {
    __android_log_print(ANDROID_LOG_WARN, TAG, "recv() failed!");
    return NULL;
  }

  RtpPacket *packet = new RtpPacket(encodedData, received);
...
RtpPacket::RtpPacket(char* packetBuf, int packetLen) {
  packet     = (char*)malloc(packetLen);
  // 1. INTEGER UNDERFLOW
  payloadLen = packetLen - sizeof(RtpHeader); 
  memcpy(packet, packetBuf, packetLen);
}

45



CRASHY	IMAGES
Signal	uses	libskia	for	media	decoding

Bugs	in	libskia...

Can't	disable	media	files	parsing	in	Signal

What	can	wrong?

46



DEMO	CRASH

Playback	isn't	supported	on	this	device.

Signal	bootloop	(reboot	root-cause	NOT	in	Signal)

0:00	/	0:45

47

https://www.youtube.com/watch?v=naLXw_N5ES8


MESSAGE	REPLAY

48



THE	EVERLASTING	PREKEY
Key	agreement	uses	one-time	prekeys

Except	for	the	"last-resort"	key

Fallback	mechanism	against	DoS

package org.whispersystems.libsignal.util;

public class Medium {
  public static int MAX_VALUE = 0xFFFFFF;
}

  public byte[] decrypt(PreKeySignalMessage ciphertext, DecryptionCallback callback)
      throws DuplicateMessageException, LegacyMessageException, InvalidMessageException,
             InvalidKeyIdException, InvalidKeyException, UntrustedIdentityException
  {
...
      if (unsignedPreKeyId.isPresent()) { 49



X3DH	KEY	AGREEMENT
Alice	fetches	Bob's	id	key	and	prekey	from	server...

Computes	shared	secret,	encrypts	a	message,	sends
with	pubkeys...

Bob	computes	shared	secret,	decrypts	the
message...

Prekey	removed	from	the	server,	except	if	it's	the
last	resort	key	(after	all	prekeys	have	been	used)

50



PREKEY	MESSAGE	STRUCTURE

Message	is	a	bundle	of	a	PreKeySignalMessage	and	an
encrypted	message	(WhisperKeyMessage)

51



PREKEY	MESSAGE	INTEGRITY

Only	the	encrypted	part	is	integrity	checked!

52



DEFENSES	AGAINST	REPLAY
Bob	won't	do	new	key	agreement	for	known	base
keys

Create	fake	session	states	and	exhaust	the	state
limit

A	valid	ciphertext	is	needed	(with	a	valid	MAC)

Piggyback	on	messages	from	a	different	session

53



WHY	REPLAY	IS	POSSIBLE
Key	exchange	and	ciphertexts	can	be	replayed

because:

Bob	does	not	check	if	the	encrypted	message
belongs	to	the	prekey	part	of	the	message

Prekey	messages	are	not	integrity	checked,	so	a
MiTM	can	create	arbitrary	session	states

Limit	of	40	session	states,	old	ones	will	be	purged

54



HOW	TO	REPLAY
1.	 Exhaust	Bob's	prekeys	(e.g.	"evil	backend"	deletes

normal	prekeys)
2.	 Let	Alice	create	a	session	with	the	last	resort	key
3.	 Record	Alice's	first	message(s)
4.	 Replay!	(even	after	Bob	computes	new	prekeys)

55



REPLAY	DEMO

56

https://asciinema.org/a/ag7h4mryap9169dutk33htc9b


AUDIO	FILE	SERVER	ON
LOCALHOST

If	you	play	an	audio	file	that	was	sent	to	you	an
open	HTTP-Server	is	started	on	localhost

Random	16	byte	URI,	random	port

Not	a	direct	problem	(unless	port	and	URI	info	leaks)

57



MORE?

Looked	at	it	yesterday	morning...	�

Greater	risk	of	"friendly	fire"	(©	Justin)
Can	coerce	peers	into	using	K	≡	0
?

58



CONCLUSIONS
Signal	has	a	huge	code	base,	underanalyzed

Our	work:	low	effort,	likely	missed	many	things

Expecting	more	logic	bugs,	protocol	edge	cases,	etc.

Secure	messengers	need	better	mitigation	and
isolation

59


