
Store now
break it later?

JP Aumasson

Store now
break it later?

JP Aumasson

This talk

How to make blockchain data future-proof?

• From forward secrecy to perennial secrecy

• Examples of “secret data” and “bad events”

• What you should (not) do to be future-proof

Forward secrecy &
Perennial secrecy

Forward secrecy

In key agreement protocols and PRNGs:

Guarantee that paste keys/randomness cannot be

determined in the future from the system’s state and keys

Future states

K1, State2 Key, State3, K1 K2

Key, State1 Key, State2

K2, State3

Past states

System compromise

Perennial secrecy

Generalization of forward secrecy, suitable to blockchains:

The assurance that today’s secret data will remain secret

later even upon bad events

State2 Secret data

Secret data1, State1 Secret data2, State2

State3

Past states Future states

Bad event

Example: PGP-encrypted email

IF Secret data = data encrypted using hybrid encryption

AND Bad event = private key compromised

AND Attacker obtains the ciphertext before or after the

key is compromised

THEN NO Perennial Secrecy

Example: E2EE secure messaging

IF Secret data = Past Signal messages

AND Bad event = current keys compromised

(long-term, ephemeral DH, and message keys)

THEN Perennial Secrecy

Because of the “symmetric key ratchet”

Example: E2EE secure messaging

IF Secret data = Past Signal messages

AND Bad event = device compromised

THEN It depends

Ephemeral messages that disappeared are safe

Messages still readable by the user are compromised

On-chain encrypted data

Unlike TLS or secure messaging, data is:

• Accessible, no need for eavesdropping capabilities

• Data stored forever and immutable (no “revocation”)

IF Bad event = Compromised keys

THEN NO Perennial Secrecy

Perennial secrecy

Generalization of forward secrecy:

In a system, the assurance that today’s secret data will

remain secret later even upon bad events

What secret data and what bad events?

Secret
data

On-chain data

Data directly stored (encrypted data, IPFS files, etc.)

Private signing keys (via their public keys)

ZK proofs (no encryption, but zero-knowledge’d data)

Private signing keys (via their public keys)

Fully-homomorphic encryption (FHE) ciphertexts

Aanti-MEV mempool threshold encryption ciphertexts

Off-chain data

Layer 2 data storage

Encrypted traffic between systems (such as nodes)

Credentials used to admin systems (passphrases, etc.)

API secrets, encrypted back-ups, wallet back-ups, etc.

On-chain commitments to secrets

Think “hash of a secret value” Hash(secret, r)

In theory: commitments offer the hiding property

Practical risks, esp. if randomness r is weak:

• Revealing low-entropy values

• Repudation/revocation impossible

Privacy-preserving systems

Privacy-preserving suggests that there is private data involved

to be preserved (and thus which may fail to be so)

Private transfers or contracts/programs

Apps with ciphertexts, commitments, or hashes of:

• PII: name, geoloc, unique IDs, hardware IDs, IPs, etc.

• Biometric data (iris scans, fingerprints, etc.)

Bad events

Obvious bad events

Flawed keygen/entropy/PRNG (Profanity-like)

Smart contracts flaws

“Forgot to encrypt” (yes, this happens)

Known bad events

Broken scheme/protocol (ZKP, FHE, threshold schemes)

Key exposed or revoked, e.g. from a threshold quorum

Quantum computers

Protocol side-channel attacks

Quantum computing

Signatures could “easily” recover

via revocation and reissuance

Encrypted data compromised if

public-key crypto used to

encrypt or to generate keys

https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/

Side channels

Can break FS is network traces recorded

ZK proofs leaks

The impact of a “break of ZKness” depends a lot on the

application and proof system

ZKP values are often succinct (a few group elements):

may or may not be enough to leak sensitive data

Ex: 3 of ~200 bits in the Groth16 SNARK

Trivial bound log2(field size)

Key management failure

The hardest problem when actually using cryptography

Key management will fail

Key rotation for risk reduction

Key rotation and “crypto periods” common in security

infrastructure to reduce the risk of key compromise

On-chain encrypted data: can’t rotate keys

Threshold signing: can refresh shares, but not keys

Wallets: can “rotate” wallets (rebalancing)

Key leak from supply-chain flaws

An encryption (symmetric) key may come from a…

• Weak/compromised key generator

• Non-PQ handshake

• A KMS, 1000 ways it could go wrong

(weak config, malicious owners, compromised cloud, etc.)

Hacks

People will fail: get phished, steal funds, get coerced, etc.

Systems will get hacked / broken , keys will leak

How to reduce the risk and damage?

Distribute trust, with collective key control

Reduce the blast radius (distribute assets, no master key)

Hacks

Unexpected bad events

What (not) to do?

Secret data

Don’t put it on chain! Even encrypted

If you have to, consider:

• Using randomized commitments instead of data

• Storing a pointer to off-chain (encrypted) data

• Storing encrypted keys on-chain and data off-chain

What data?

Avoid at all costs storing PII on-chain, even if encrypted

If such data needed, store a reference to off-chain storage

Data with short lifetime or secrecy requirement is by

definition future-proof, so can be OK to log on-chain

Bad events

Identify them, try to reduced their likelihood

Do threat modelling:

• Identify of secret data (private inputs, etc.)

• Estimate their lifetime

Challenges

• Perennial security of systems deployed today is rarely

evaluated prior to deployment

• Blockchain projects often have low security, due to the

low maturity: minimal processes and accountability

	Slide 1: Store now break it later? JP Aumasson
	Slide 2: Store now break it later? JP Aumasson
	Slide 3: This talk
	Slide 4: Forward secrecy & Perennial secrecy
	Slide 5: Forward secrecy
	Slide 6: Perennial secrecy
	Slide 7: Example: PGP-encrypted email
	Slide 8: Example: E2EE secure messaging
	Slide 9: Example: E2EE secure messaging
	Slide 10: On-chain encrypted data
	Slide 11: Perennial secrecy
	Slide 12: Secret data
	Slide 13: On-chain data
	Slide 14: Off-chain data
	Slide 15: On-chain commitments to secrets
	Slide 16: Privacy-preserving systems
	Slide 17
	Slide 18: Obvious bad events
	Slide 19: Known bad events
	Slide 20: Quantum computing
	Slide 21: Side channels
	Slide 22: ZK proofs leaks
	Slide 23: Key management failure
	Slide 24: Key management will fail
	Slide 25: Key rotation for risk reduction
	Slide 26: Key leak from supply-chain flaws
	Slide 27: Hacks
	Slide 28: Hacks
	Slide 29: Unexpected bad events
	Slide 30: What (not) to do?
	Slide 31: Secret data
	Slide 32: What data?
	Slide 33: Bad events
	Slide 34: Challenges

