On recent higher-order
cryptanalysis techniques

Jean-Philippe Aumasson

n w University of Applied Sciences Northwestern Switzerland
School of Engineering

FHNW, Switzerland

37

Agenda

Definitions: higher-order cryptanalysis, cube attacks,
cube testers

Applications: Grain-128, Grain-v1, KATAN

Most recent developments: zero-sums and k-sums,
application to Hamsi, Keccak, Luffa

Conclusion: how to resist higher-order cryptanalysis?

Definitions

=Google(‘ ‘higher-order differential’’) (??7?)

3/37

Higher-order cryptanalysis (1/2)

Differential cryptanalysis based on order-1 derivatives:
Ex: Ex(m)® Ex(ma® A)

Higher-order differential cryptanalysis: based on
derivatives of order > 2

Order-d derivative with respect to d bits is the sum of all
29 outputs obtained by varying these d bits

Lf_ Z f(x)
8X1 ...aXd N

forsome f:{0,1}" — {0,1},d <n

Higher-order cryptanalysis (2/2)

Why can it work when classical differential cryptanalysis
fails?
Ex: random f: {0,1}" — {0,1} of degree d < n

» lts first order derivative looks random

» Its order-(d — 1) derivative is linear

» lts order-d derivative is a constant

Previous higher-order attacks called “integral
cryptanalysis”, “Square attack”, “saturation attack”, etc.

Most recent and refined version: cube attacks/testers

Cube attacks/testers (1/8)

11:10 - 12:10 How to Solve it: New it in
Adi Shamir

Cube Attacks on Tweakable Black Box

[Dinur, Shamir; EUROCRYPT’09] [A., Dinur, Meier, Shamir; FSE’09]

Previous discovery claimed by Vielhaber (“AIDA”). ..
ePrint 2007/413, 2009/402

6/37

Cube attacks/testers (2/8)

Cube attacks = key-recovery attacks (need a secret)

Offline phase (precomputation)

» Search for public variables (1V, plaintext) whose
derivative is a linear combination of key bits

» Linearity detected via probabilistic testing
» Bit-per-bit reconstructions of equations

Online phase

» Evaluate each linear equation detected during
precomputation

» Solve the linear system obtained

Cube attacks/testers (3/8)

Ex (coefficient of the max-degree monomial):

f(X1,X2,X3,X4) = X1+ X3+ X1XoX3 + X1X2X4
= X1+ X3+ X1 XoX3 + X1 XoXa + 0 X X1 XoX3Xs

Sum over all values of (xq, X2, X3, X4):
f(0,0,0,0)+f(0,0,0,1)+f(0,0,1,0)+---+f(1,1,1,1) =0

= order-4 derivative

Cube attacks/testers (4/8)

Ex (evaluation of linear combination):

f(X1,X2,X3,X4) = X1+ X3+ X1XoX3 + X1 XoX4
= X1+ X3+ X1 Xo(X3 + Xa)

Fix x3 and x4, sum over all values of (x;, x2):

Z f(X1,X2,X3,X4) = 4><X1+4><X3—|—1><(X3+X4)
(x1,x2)€{0,1}2
= X3+ X4

= order-2 derivative

37

Cube attacks/testers (5/8)

X3 and x4 fixed and unknown

f(-,-, X3, X4) queried as a black box

ANF unknown, except: x;x2’s superpoly is (X3 + xa)
f(X1, X2, X3, X4) = - -+ + X1 Xo(X3 + Xg) + - - -
Query f to evaluate the superpoly:

Z f(X1,X2,X3,X4) = X3+ X4
(x1,%2)€{0,1}2

10/37

Cube attacks/testers (6/8)

Key recovery attack on a stream cipher
f:(k,v)— 1st keystream bit:

Offline: find cubes with linear superpolys

f(k,v) = -+ vivavsV7(Ko + k3 + Ks) + - - -
f(k,v) = -+ viVaVeVgVia(ki + ko) + - --
f(k,v) = -+ VaVaVsVe(ks + ks + ks) + - - -

Online: evaluate the superpolys, solve the system

11/37

Cube attacks/testers (7/8)

Cube testers = distinguishers

Detect a structure in the derivative which is not expected
for an ideal algorithm

Ex: linearity, low degree, sparsity, imbalance

Compared to cube attacks
» At least as powerful (wrt # rounds attacked)
» Need less precomputation
» Do not require linear or low-degree derivative

12/37

Cube attacks/testers (8/8)

Problem: finding good sets of public variables (bottleneck)

Analytical approach:

» Analyze internals of the algorithm to determine
variables with “lesser” interaction in the computation

» Ex: study of recurrence relations in Luffa by Hatano
and Watanabe

Empirical approach:
» Use tools such a discrete optimization algorithms
» Ex: genetic algorithms for attacking Grain-128. ..

In practice, combine the two approaches

13/37

Applications

@ Why haven't cube attacks broken anything? - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@-»-@& (3} [0 http://cr.yp.to/cubeattacks. html

Hash functions and ciphers
Why haven't cube attacks broken anything?

The talk and the paper

Hundreds of cryptographers were sitting in a dark lecture room at the University of California at Santa Bar
"How to solve it: new techniques in algebraic cryptanalysis."

Shamir had already advertised his talk as introducing "cube attacks," a powerful new attack technique that
describing a stream cipher with an extremely large key, many S-boxes, etc. David Wagner Later wrote that
Laugh - since it seemed ridiculous to imagine an attack on the design, yet I knew if he was describing this «

14/37

Grain-128 (1/2)
State-of-the-art stream cipher developed within

ECRYPT

=920 °s eSTREAM Project
(04-08)

Designed by Hell, Johansson, Maximov, Meier (2007)
128-bit version of the eSTREAM cowinner Grain-v1
128-bit key, 96-bit 1V, 256-bit state

Previous DPA and related-key attacks
Standard-model attack on 192-round version (of 256)

vV V. v v Y

15/37

Grain-128 (2/2)

degf=1,degg=2,degh=3
Initalization: key in NFSR, IV in LFSR, clock 256 times
Then 1 keystream bit per clock

16/37

Cube testers on Grain-128 (1/4)

[A., Dinur, Henzen, Meier, Shamir; SHARCS’09]

Method:
1. Select n variables (IV bits)
2. Set the remaining IV bits to zero
3. Set the key bits randomly
4. Run Grain-128 for all 2" values to evaluate derivative
5. Repeat steps 3-4 N times and make statistics

Try to detect imbalance
Ex: if derivatives look like Xpx1 X2 + X1 XoX3X4Xs5

17/37

Cube testers on Grain-128 (2/4)

Hardware implementation:
» Xilinx Virtex-5 FPGA
» 256 instances of 32xGrain-128 in parallel
» Efficient VHDL implementation of cube testers
» Attacks involving more than 2% clocks in ~1 day

18/37

Cube testers on Grain-128 (3/4
Bitsliced C program:
» Run 64 instances of Grain-128 in parallel
» Used for parameters optimization (evolutionary algos)

U64 graing0_bitslicedss(ues * key, ues *

v, int rounds) {
U64 1[80srounds], n[8B+rounds],

/* initialize registers */
e

y [
\m— W3
1

For(i=64; 1<80; i+

1= key[il;
1[1]= OXFFFFFFFFFFFFFFFFULL;

0; i<rounds; 1r{
/% clock */

1[6+80] = L[] A 1[1+13] A 1[1+23] A 1[(+38] A 1[451] A 1[462];
nLi+80] = 1[{] A n[i] A n[1+9] A n[i+14] A n[{+21] A n[i+28] A n[i+33] A N[L+37] A N[1+37] A n[i+45] A n[1+52] A [i+60] A
n[i+62] A (n[1+63] & n[1+60]) A (n[1+37] & n[1+33]) A (n[i+15] & n[i+3]) A
C n[1+60] & n[1+52] & n[i+45]) A (n[1+33] & n[1+28] & n[1+21]) A C n[1+63] & n[i+45] & n[1+28] & n[i+9]) A
C n[i+60] & n[i+52] & n[1+37] & n[1+33]) A n[i+63] & n[i+60] & n[i+21] & n[i+15]) »
C n[i+63] & n[1+60] & n[i+52] & n[i+45] & n[+37]) A (n[1+33] & n[i+28] & n[i+21] & n[i+15] & n[149]) A
€ n[i+52] & n[i+45] & n[1+37] & n[i+33] & n[i+28] & n[i+21]
z=nli+ 1] Anfi

2 = 1[1+25] A n[1+63] A C 1[1+3] & 1[1+64]) A CL[1+46] & L[1+641) A CL1+64] & n[1+63]) A (L[1+3] & L[1+25] & L[i+46]
QULL3] & L6 & 100641)+ Qf5e3] & 1[1246] & ALLGE > A QUL & 11kvde] & n[\r53]) A (ULE46] & 1[{+64] " L4631)3
+ 20 A [+ 4] A i

+10] A n[i + 31] A n[i + 43] A n

[+ 561 4
[i+80] A= 2; n[1+80] A= z;
¥

/% return 1 ke

ystrean bit *,

Ltz B AL A (s & \[nz
z=nli+

o (H[\rBS] 8 10
2] A n[i + 151 AnLi + 36] A nCi + 45]

20 4 (Lol & 1[L731) » (n[\qz] & n[\v‘)S] & 101095105
ALl + 73] A [l + 89] A2 AL

19/37

Cube testers on Grain-128 (4/4)

Distinguisher for 237 rounds (of 256) in 240

Extrapolation: 3=/ //

/

Initializati

-
-

Suggests existence of distinguishers in 277

= 128-bit security unlikely

20/37

The case of Grain-v1

eSTREAM cowinner, original version of Grain
2x80-bit state, 160 initialization rounds
Seems to resist cube testers (81 rounds in 224), why?

21/37

The case of Grain-v1

eSTREAM cowinner, original version of Grain
2x80-bit state, 160 initialization rounds
Seems to resist cube testers (81 rounds in 224), why?

NFSR feedback of degree 6 (vs. 2 for Grain-128)
Filter function of degree 3 (vs. 2)

Denser feedback and filter functions

Shorter feedback delay (16 vs. 32)

» Smaller registers (80 vs. 128)

>
>
»
>

= converges faster towards ideal ANF

21/37

The case of KATAN (1/2)

[De Canniere, Dunkelman, Knezevic; CHES’09]

Lightweight block cipher
80-bit key; 32-, 48-, or 64-bit blocks

Compact in HW: 802 GE, for 6.25 GE/flip-flop (KATAN-32)

c—em

Ly ‘

G SR

4’€9‘7ka

IR A

ki— @

Pan s

e ej"_

22/37

The case of KATAN (2/2)

NFSR’s properties:
» Degree-2 and sparse feedback function

» Short feedback delay (3)

Paper: “after 160 rounds, the degree of each internal
state bit can reach 32” (for KATAN-32)

Our observations: degree 20 reached after 55 rounds,
thus degree-32 probably reached after 87 rounds only!

23/37

The case of KATAN (2/2)

NFSR’s properties:
» Degree-2 and sparse feedback function
» Short feedback delay (3)

Paper: “after 160 rounds, the degree of each internal
state bit can reach 32” (for KATAN-32)

Our observations: degree 20 reached after 55 rounds,
thus degree-32 probably reached after 87 rounds only!

= sparse and degree-2 function okay when feedback
delay is short. ..

... but combinatorial logic is cheap (a few NAND’s), while
memory (FSR’s) is expensive in hardware. ..
= better increase degree and density as a safety net?

23/37

Most recent developments

[A., Knudsen, Meier]

24/37

k-sums

Consider a permutation F : {0,1}" — {0,1}¢

k-sum: set {x1, ..., Xk} such that

k

P F(x)=0

Generalized birthday attack in time and space

O (k - 2t/(1+1oak))

25/37

Zero-sums (1/2)

Consider a permutation P : {0,1}¢ — {0,1}¢

Zero-sum: set {xy, ..., X} such that

k k

@x; = EBP(X,-) =0

i=1 i=1

Generic probabilistic methods:
» Generalized birthday attack
» XHASH attack (linear algebra)

How to exploit the algebraic structure to find zero-sums?

26/37

Zero-sums (2/2)

Cube attack and k-sums need

low degree

Zero-sums need

low degree low degree

Inside-out strategy
» Fix state in the middle, vary k bits
» If degree < k for both halves, 2% values sum to zero

Need only evaluate at most half the algorithm

27/37

Application to Keccak (1/3)

» Second-round SHA-3 candidate
» 1600-bit state
» 18 nonidentical rounds

28/37

Application to Keccak (1/3)

» Second-round SHA-3 candidate
» 1600-bit state

» 18 nonidentical rounds

» One round has degree 2

» One inverse round has degree 3

10 rounds: degree upper bound 2% = 1024 (suboptimal)
= higher-order distinguisher in 21024

13 rounds: degree upper bound 2" > 1599 (optimal)
higher-order distinguisher

28/37

Application to Keccak (2/3)
Consider 257 variables in the state after 5 rounds
» Preimage = degree-243 mapping
» Image = degree-256 mapping
» Compute order-257 derivative in both directions

5 rounds 8 rounds
degree < 3% =243 | degree < 28 =256

Obtain (X1, ..., Xo2s7) such that @fj x; is the order-257
derivative of a degre-256 polynomial: must be zero

= zero-sum on 13 rounds in 2257 x first 5 rounds

29/37

Application to Keccak (3/3)

Optimizations: exploit structure of the inverse permutation

#rounds

complexity

8
10
12
14
16

217

260
21 28

2256
21 024

(18 rounds in full version)

Tweak for the second round: #rounds set to 24, rate

modified

30/37

Application to Luffa

» Second-round SHA-3 candidate
» AND/XOR algorithm (like Keccak)
» Tweaked for the second round
Q permutation of Luffa (256-bit)
» Distinguisher on full version (8 rounds) in 28!
» Distinguisher on 7 rounds in 227
» Not relevant for the hash algorithm

31/37

Application to Hamsi (1/3)

» Second-round SHA-3 candidate
» Two main instances: Hamsi-256 and Hamsi-512
» Serpent-like algorithm (4-bit Sbox + linear layer)

Davies-Meyer compression function

- message expansion B iv[,i ; | | h:‘ |_

| concatenation C |
¥

non-linear permutation P/Pf

¥
truncation T |

3 rounds (6 for the last compression)

32/37

Application to Hamsi (2/3)

Observations:

» 3 rounds have degree 3 only, instead of ideally 27
(with respect to carefully chosen variables)

» Distribution of monomials and binomials is sparse

33/37

Application to Hamsi (2/3)

Observations:

» 3 rounds have degree 3 only, instead of ideally 27
(with respect to carefully chosen variables)

» Distribution of monomials and binomials is sparse
Consequences:
16-, 8-, 4-sums can be found efficiently
Example found for the default IV of Hamsi. ..

Zero-sums can be found efficiently for the permutation

33/37

Application to Hamsi (3/3)

Previous near collisions (or 2 sums):

» (256 — 25)-bit collision from 14 bit differences [Nikolic]

» (256 — 23)-bit collision from 16 bit differences [\Wang
et al.]

34/37

Application to Hamsi (3/3)

Previous near collisions (or 2 sums):

» (256 — 25)-bit collision from 14 bit differences [Nikolic]

» (256 — 23)-bit collision from 16 bit differences [\Wang
et al.]

We found a differential characteristic of probability 2-26
Consequence:

(256 — 25)-bit collision from 6 bit differences

Easier for the default IV than for a random one...

34/37

Conclusion

L 3

-
-
/

35/37

Conclusion

Higher-order methods are diverse, simple, powerful. . .

But only on certain designs, based on
» AND/XOR
» Small Sboxes

AXR and AES-based designs immune (even for low
#rounds)

Recommendations for new designs
» If possible, use ADD (or other highly nonlinear op.)
» Maximum degree achieved with 25% of the #rounds
» Benchmark with cube testers

36/37

On recent higher-order
cryptanalysis techniques

Jean-Philippe Aumasson

n w University of Applied Sciences Northwestern Switzerland
School of Engineering

FHNW, Switzerland

37/37

