
On recent higher-order
cryptanalysis techniques

Jean-Philippe Aumasson

FHNW, Switzerland

1 / 37



Agenda

Definitions: higher-order cryptanalysis, cube attacks,
cube testers

Applications: Grain-128, Grain-v1, KATAN

Most recent developments: zero-sums and k -sums,
application to Hamsi, Keccak, Luffa

Conclusion: how to resist higher-order cryptanalysis?

2 / 37



Definitions

=Google(‘‘higher-order differential’’) (???)

3 / 37



Higher-order cryptanalysis (1/2)

Differential cryptanalysis based on order-1 derivatives:

Ex: Ek (m)⊕ Ek (m ⊕∆)

Higher-order differential cryptanalysis: based on
derivatives of order ≥ 2

Order-d derivative with respect to d bits is the sum of all
2d outputs obtained by varying these d bits

∂d f
∂x1 . . . ∂xd

=
∑

(x1,...,xd )∈{0,1}d

f (x)

for some f : {0, 1}n → {0, 1}, d ≤ n

4 / 37



Higher-order cryptanalysis (2/2)

Why can it work when classical differential cryptanalysis
fails?

Ex: random f : {0, 1}n → {0, 1} of degree d ≤ n
I Its first order derivative looks random
I Its order-(d − 1) derivative is linear
I Its order-d derivative is a constant

Previous higher-order attacks called “integral
cryptanalysis”, “Square attack”, “saturation attack”, etc.

Most recent and refined version: cube attacks/testers

5 / 37



Cube attacks/testers (1/8)

[Dinur, Shamir; EUROCRYPT’09] [A., Dinur, Meier, Shamir; FSE’09]

Previous discovery claimed by Vielhaber (“AIDA”). . .
ePrint 2007/413, 2009/402

6 / 37



Cube attacks/testers (2/8)

Cube attacks = key-recovery attacks (need a secret)

Offline phase (precomputation)
I Search for public variables (IV, plaintext) whose

derivative is a linear combination of key bits
I Linearity detected via probabilistic testing
I Bit-per-bit reconstructions of equations

Online phase
I Evaluate each linear equation detected during

precomputation
I Solve the linear system obtained

7 / 37



Cube attacks/testers (3/8)

Ex (coefficient of the max-degree monomial):

f (x1, x2, x3, x4) = x1 + x3 + x1x2x3 + x1x2x4

= x1 + x3 + x1x2x3 + x1x2x4 + 0× x1x2x3x4

Sum over all values of (x1, x2, x3, x4):

f (0, 0, 0, 0)+f (0, 0, 0, 1)+f (0, 0, 1, 0)+· · ·+f (1, 1, 1, 1) = 0

= order-4 derivative

8 / 37



Cube attacks/testers (4/8)

Ex (evaluation of linear combination):

f (x1, x2, x3, x4) = x1 + x3 + x1x2x3 + x1x2x4

= x1 + x3 + x1x2(x3 + x4)

Fix x3 and x4, sum over all values of (x1, x2):∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = 4× x1 + 4× x3 + 1× (x3 + x4)

= x3 + x4

= order-2 derivative

9 / 37



Cube attacks/testers (5/8)

x3 and x4 fixed and unknown

f (·, ·, x3, x4) queried as a black box

ANF unknown, except: x1x2’s superpoly is (x3 + x4)

f (x1, x2, x3, x4) = · · ·+ x1x2(x3 + x4) + · · ·

Query f to evaluate the superpoly:∑
(x1,x2)∈{0,1}2

f (x1, x2, x3, x4) = x3 + x4

10 / 37



Cube attacks/testers (6/8)

Key recovery attack on a stream cipher
f : (k , v) 7→ 1st keystream bit:

Offline: find cubes with linear superpolys

f (k , v) = · · ·+ v1v3v5v7(k2 + k3 + k5) + · · ·
f (k , v) = · · ·+ v1v2v6v8v12(k1 + k2) + · · ·
· · · = · · ·

f (k , v) = · · ·+ v3v4v5v6(k3 + k4 + k5) + · · ·

Online: evaluate the superpolys, solve the system

11 / 37



Cube attacks/testers (7/8)

Cube testers = distinguishers

Detect a structure in the derivative which is not expected
for an ideal algorithm

Ex: linearity, low degree, sparsity, imbalance

Compared to cube attacks
I At least as powerful (wrt # rounds attacked)
I Need less precomputation
I Do not require linear or low-degree derivative

12 / 37



Cube attacks/testers (8/8)

Problem: finding good sets of public variables (bottleneck)

Analytical approach:
I Analyze internals of the algorithm to determine

variables with “lesser” interaction in the computation
I Ex: study of recurrence relations in Luffa by Hatano

and Watanabe

Empirical approach:
I Use tools such a discrete optimization algorithms
I Ex: genetic algorithms for attacking Grain-128. . .

In practice, combine the two approaches

13 / 37



Applications

14 / 37



Grain-128 (1/2)

State-of-the-art stream cipher developed within

’s eSTREAM Project
(04-08)

I Designed by Hell, Johansson, Maximov, Meier (2007)
I 128-bit version of the eSTREAM cowinner Grain-v1
I 128-bit key, 96-bit IV, 256-bit state
I Previous DPA and related-key attacks
I Standard-model attack on 192-round version (of 256)

15 / 37



Grain-128 (2/2)

NFSR LFSR

h

g f

i
?

?
- �

- �

- -

?i� � �

7 2 7 1

19 1 6 1

deg f = 1, deg g = 2, deg h = 3

Initalization: key in NFSR, IV in LFSR, clock 256 times

Then 1 keystream bit per clock
16 / 37



Cube testers on Grain-128 (1/4)

[A., Dinur, Henzen, Meier, Shamir; SHARCS’09]

Method:
1. Select n variables (IV bits )
2. Set the remaining IV bits to zero
3. Set the key bits randomly
4. Run Grain-128 for all 2n values to evaluate derivative
5. Repeat steps 3-4 N times and make statistics

Try to detect imbalance
Ex: if derivatives look like x0x1x2 + x1x2x3x4x5

17 / 37



Cube testers on Grain-128 (2/4)
Hardware implementation:

I Xilinx Virtex-5 FPGA
I 256 instances of 32×Grain-128 in parallel
I Efficient VHDL implementation of cube testers
I Attacks involving more than 254 clocks in ≈1 day

18 / 37



Cube testers on Grain-128 (3/4)
Bitsliced C program:

I Run 64 instances of Grain-128 in parallel
I Used for parameters optimization (evolutionary algos)

19 / 37



Cube testers on Grain-128 (4/4)

Distinguisher for 237 rounds (of 256) in 240

Extrapolation:

Suggests existence of distinguishers in 277

⇒ 128-bit security unlikely

20 / 37



The case of Grain-v1

eSTREAM cowinner, original version of Grain

2×80-bit state, 160 initialization rounds

Seems to resist cube testers (81 rounds in 224), why?

I NFSR feedback of degree 6 (vs. 2 for Grain-128)
I Filter function of degree 3 (vs. 2)
I Denser feedback and filter functions
I Shorter feedback delay (16 vs. 32)
I Smaller registers (80 vs. 128)

⇒ converges faster towards ideal ANF

21 / 37



The case of Grain-v1

eSTREAM cowinner, original version of Grain

2×80-bit state, 160 initialization rounds

Seems to resist cube testers (81 rounds in 224), why?

I NFSR feedback of degree 6 (vs. 2 for Grain-128)
I Filter function of degree 3 (vs. 2)
I Denser feedback and filter functions
I Shorter feedback delay (16 vs. 32)
I Smaller registers (80 vs. 128)

⇒ converges faster towards ideal ANF

21 / 37



The case of KATAN (1/2)
[De Cannière, Dunkelman, Knezevic; CHES’09]

Lightweight block cipher

80-bit key; 32-, 48-, or 64-bit blocks

Compact in HW: 802 GE, for 6.25 GE/flip-flop (KATAN-32)

22 / 37



The case of KATAN (2/2)
NFSR’s properties:

I Degree-2 and sparse feedback function
I Short feedback delay (3)

Paper: “after 160 rounds, the degree of each internal
state bit can reach 32” (for KATAN-32)

Our observations: degree 20 reached after 55 rounds,
thus degree-32 probably reached after 87 rounds only!

⇒ sparse and degree-2 function okay when feedback
delay is short. . .

. . . but combinatorial logic is cheap (a few NAND’s), while
memory (FSR’s) is expensive in hardware. . .
⇒ better increase degree and density as a safety net?

23 / 37



The case of KATAN (2/2)
NFSR’s properties:

I Degree-2 and sparse feedback function
I Short feedback delay (3)

Paper: “after 160 rounds, the degree of each internal
state bit can reach 32” (for KATAN-32)

Our observations: degree 20 reached after 55 rounds,
thus degree-32 probably reached after 87 rounds only!

⇒ sparse and degree-2 function okay when feedback
delay is short. . .

. . . but combinatorial logic is cheap (a few NAND’s), while
memory (FSR’s) is expensive in hardware. . .
⇒ better increase degree and density as a safety net?

23 / 37



Most recent developments

[A., Knudsen, Meier]

24 / 37



k -sums

Consider a permutation F : {0, 1}n → {0, 1}`

k -sum: set {x1, . . . , xk} such that

k⊕
i=1

F (xi) = 0

Generalized birthday attack in time and space

O
(
k · 2`/(1+log k)

)

25 / 37



Zero-sums (1/2)

Consider a permutation P : {0, 1}` → {0, 1}`

Zero-sum: set {x1, . . . , xk} such that

k⊕
i=1

xi =
k⊕

i=1

P(xi) = 0

Generic probabilistic methods:
I Generalized birthday attack
I XHASH attack (linear algebra)

How to exploit the algebraic structure to find zero-sums?

26 / 37



Zero-sums (2/2)

Cube attack and k -sums need

low degree
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Zero-sums need

low degree
←−−−−−−−−−−−−−−−−−

low degree
−−−−−−−−−−−−−−−−−→

Inside-out strategy
I Fix state in the middle, vary k bits
I If degree < k for both halves, 2k values sum to zero

Need only evaluate at most half the algorithm

27 / 37



Application to Keccak (1/3)

I Second-round SHA-3 candidate
I 1600-bit state
I 18 nonidentical rounds

I One round has degree 2
I One inverse round has degree 3

10 rounds: degree upper bound 210 = 1024 (suboptimal)
⇒ higher-order distinguisher in 21024

13 rounds: degree upper bound 213 � 1599 (optimal)
6⇒ higher-order distinguisher

28 / 37



Application to Keccak (1/3)

I Second-round SHA-3 candidate
I 1600-bit state
I 18 nonidentical rounds
I One round has degree 2
I One inverse round has degree 3

10 rounds: degree upper bound 210 = 1024 (suboptimal)
⇒ higher-order distinguisher in 21024

13 rounds: degree upper bound 213 � 1599 (optimal)
6⇒ higher-order distinguisher

28 / 37



Application to Keccak (2/3)
Consider 257 variables in the state after 5 rounds

I Preimage = degree-243 mapping
I Image = degree-256 mapping
I Compute order-257 derivative in both directions

5 rounds 8 rounds
degree ≤ 35 = 243 degree ≤ 28 = 256

←−−−−−−−−−− −−−−−−−−−−−−−−−−−→

Obtain (x1, . . . , x2257) such that
⊕2257

i=1 xi is the order-257
derivative of a degre-256 polynomial: must be zero

⇒ zero-sum on 13 rounds in 2257× first 5 rounds
29 / 37



Application to Keccak (3/3)

Optimizations: exploit structure of the inverse permutation

#rounds complexity

8 217

10 260

12 2128

14 2256

16 21024

(18 rounds in full version)

Tweak for the second round: #rounds set to 24, rate
modified

30 / 37



Application to Luffa

I Second-round SHA-3 candidate
I AND/XOR algorithm (like Keccak)
I Tweaked for the second round

Q permutation of Luffa (256-bit)

I Distinguisher on full version (8 rounds) in 281

I Distinguisher on 7 rounds in 227

I Not relevant for the hash algorithm

31 / 37



Application to Hamsi (1/3)

I Second-round SHA-3 candidate
I Two main instances: Hamsi-256 and Hamsi-512
I Serpent-like algorithm (4-bit Sbox + linear layer)

Davies-Meyer compression function

concatenation C

message expansion

truncation T

non-linear permutation P /Pf

Mi hi

hi+1

E(Mi)

3 rounds (6 for the last compression)

32 / 37



Application to Hamsi (2/3)

Observations:

I 3 rounds have degree 3 only, instead of ideally 27
(with respect to carefully chosen variables)

I Distribution of monomials and binomials is sparse

Consequences:

16-, 8-, 4-sums can be found efficiently

Example found for the default IV of Hamsi. . .

Zero-sums can be found efficiently for the permutation

33 / 37



Application to Hamsi (2/3)

Observations:

I 3 rounds have degree 3 only, instead of ideally 27
(with respect to carefully chosen variables)

I Distribution of monomials and binomials is sparse

Consequences:

16-, 8-, 4-sums can be found efficiently

Example found for the default IV of Hamsi. . .

Zero-sums can be found efficiently for the permutation

33 / 37



Application to Hamsi (3/3)

Previous near collisions (or 2 sums):

I (256−25)-bit collision from 14 bit differences [Nikolic]
I (256− 23)-bit collision from 16 bit differences [Wang

et al.]

We found a differential characteristic of probability 2−26

Consequence:

(256− 25)-bit collision from 6 bit differences

Easier for the default IV than for a random one. . .

34 / 37



Application to Hamsi (3/3)

Previous near collisions (or 2 sums):

I (256−25)-bit collision from 14 bit differences [Nikolic]
I (256− 23)-bit collision from 16 bit differences [Wang

et al.]

We found a differential characteristic of probability 2−26

Consequence:

(256− 25)-bit collision from 6 bit differences

Easier for the default IV than for a random one. . .

34 / 37



Conclusion

35 / 37



Conclusion

Higher-order methods are diverse, simple, powerful. . .

But only on certain designs, based on
I AND/XOR
I Small Sboxes

AXR and AES-based designs immune (even for low
#rounds)

Recommendations for new designs
I If possible, use ADD (or other highly nonlinear op.)
I Maximum degree achieved with 25% of the #rounds
I Benchmark with cube testers

36 / 37



On recent higher-order
cryptanalysis techniques

Jean-Philippe Aumasson

FHNW, Switzerland

37 / 37


