
JP Aumasson

jp@taurusgroup.ch

Omer Shlomovits
omer@ZenGo.com

Attacking Threshold Wallets

RWC 2021

1

mailto:jp@taurusgroup.ch
mailto:omer@kzencorp.com

Source :

2

Background

3

Map
• Threshold signing theory and practice

• New attacks on threshold ECDSA impl.

• Forget-and-Forgive: Re-share protocol sabotage

• Latter-Rinse-Repeat: secret key oracle

• Golden Shoe: Leaky share conversion

• New attacks on threshold EdDSA impl.

• Learnings & Best Practices

• Q&A

(Attacking Threshold Wallets)

(A Survey of ECDSA Threshold Signing)

(RWdC)

(BlackHat USA2020)

4

https://eprint.iacr.org/2020/1052.pdf
https://eprint.iacr.org/2020/1390.pdf
https://www.aumasson.jp/data/talks/BH20_mpctss.pdf

Threshold signature schemes (TSS)
1. Distributed key generation (DKG)

2. (t, n) threshold signing, t < n

• Signing key represented as n shares

• t+1 shares necessary and sufficient to sign

• t or fewer shares “useless”

3. Secret key must re-shared from time to time

5

Forget & Forgive
Re-share protocol sabotage

6

The vulnerability was found in the “Secret Re-sharing” protocol

Forget & Forgive Setup

7

Input: a committee of parties each holding a secret share of a secret key

Output: a new committee, each holding a new secret share of

sk

sk

The vulnerability was found in the “Secret Re-sharing” protocol

Forget & Forgive Setup

8

Input: a committee of parties each holding a secret share of a secret key

Output: a new committee, each holding a new secret share of

sk

sk

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares

sk

The vulnerability was found in the “Secret Re-sharing” protocol

Forget & Forgive Setup

9

Input: a committee of parties each holding a secret share of a secret key

Output: a new committee, each holding a new secret share of

sk

sk

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares

sk

Where is the problem ?

The vulnerability was found in the “Secret Re-sharing” protocol

Forget & Forgive Setup

10

For simplicity, wlog, assume the new committee is the same as the old committee

Forget & Forgive Vulnerability

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares.

3) Each committee member overwrites the old secret share with the new share

sk

11

For simplicity, wlog, assume the new committee is the same as the old committee

Forget & Forgive Vulnerability

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares.

3) Each committee member overwrites the old secret share with the new share

sk

If at least one share is invalid, then return

12

For simplicity, wlog, assume the new committee is the same as the old committee

Forget & Forgive Vulnerability

• A party receiving an invalid share —> will abort the protocol, keeping its old share

• A party receiving valid shares —> will finish the protocol, overwriting the old share

Protocol:

1) Each old committee member secret-shares their share using Feldman VSS

2) Each new committee member verifies and sums its received shares.

3) Each committee member overwrites the old secret share with the new share

sk

If at least one share is invalid, then return

13

An attacker will divide the committee by sending valid shares to a subset,
and invalid shares to the other subset.

Forget & Forgive Vulnerability

14

Forget & Forgive Exploit
• The adversary model allows for corrupted parties, however the attack

can be mounted by a single party

t

15

Forget & Forgive Exploit
• The adversary model allows for corrupted parties, however the attack

can be mounted by a single party

• In some cases, even a network adversary that corrupts selected
messages can mount such attack

t

16

• Example exploitation scenarios:

• Money lock

• Money loss (in case the key is not backed up)

• Money extortion (if attacker gets enough reshare iterations)

Forget & Forgive Exploit
• The adversary model allows for corrupted parties, however the attack

can be mounted by a single party

• In some cases, even a network adversary that corrupts selected
messages can mount such attack

t

17

From the security release:

a final round has been added to the re-sharing protocol where the new
committee members send ACK messages to members of both the old and
new committees. Each participant must receive ACK messages from n
members of the new committee (excluding themselves) before they save any
data to disk.

Forget & Forgive Mitigation

18

From the security release:

a final round has been added to the re-sharing protocol where the new
committee members send ACK messages to members of both the old and
new committees. Each participant must receive ACK messages from n
members of the new committee (excluding themselves) before they save any
data to disk.

Forget & Forgive Mitigation

• The requirement of a “Blame phase” was observed in classical works on DKG

• The [GG18] protocol assumes a dishonest majority, therefore, a single party can abort
the resharing protocol (no robustness)

19

https://eprint.iacr.org/2019/114.pdf

Golden Shoe
 Leaky share conversion

20

Golden Shoe Setup
• [GG18] MtA 2-party share conversion

21

https://eprint.iacr.org/2019/114.pdf

Golden Shoe Setup
• Input: Alice and Bob hold multiplicative secret shares

• Output: additive secret shares , such that + =

a, b

α β α β a ⋅ b mod q

22

• [GG18] MtA 2-party share conversion

https://eprint.iacr.org/2019/114.pdf

Golden Shoe Setup
• Input: Alice and Bob hold multiplicative secret shares

• Output: additive secret shares , such that + =

a, b

α β α β a ⋅ b mod q

Protocol:

- Paillier cryptosystem

- For security against malicious adversaries, need for ZK proofs.

- In all zk proofs, the prover must use an RSA group (modulus), not knowing
the group order, as well as two group elements, , not knowing the relation
between them

N
h1, h2

23

• [GG18] MtA 2-party share conversion

https://eprint.iacr.org/2019/114.pdf

• must be verifiable and testedN, h1, h2

Golden Shoe Vulnerability
Protocol:

- Paillier cryptosystem

- For security against malicious adversary use ZK proofs.

- In all proofs the prover must use an RSA group (modulus), not knowing the
group order, as well as two group elements, , not knowing the relation
between them

N
h1, h2

24

• must be verifiable and testedN, h1, h2

Golden Shoe Vulnerability

• The two popular methods in the literature are:

1) A trusted party generates

2) The verifier generates and proves their validity in ZK

N, h1, h2

N, h1, h2

25

• must be publicly verifiable and testedN, h1, h2

Golden Shoe Vulnerability

• The two popular methods in the literature are:

1) A trusted party generates

2) The verifier generates and proves their validity in ZK

N, h1, h2

N, h1, h2

• In the library attacked, the two methods got mixed: The verifier generates the
parameters and sends them to the prover, however, the prover does not check them!

26

• must be publicly verifiable and testedN, h1, h2

Golden Shoe Vulnerability

• The two popular methods in the literature are:

1) A trusted party generates

2) The verifier generates and proves their validity in ZK

N, h1, h2

N, h1, h2

• In the library attacked, the two methods got mixed: The verifier generates the
parameters and sends them to the prover, however, the prover does not check them!

• Classical case of missing input sanitisation, as in web applications

27

• are crucial to the proof. Specifically “Zero knowledge requires
that discrete logs of , relative to each other modulo exist (i.e. that

, generate the same group)”

N, h1, h2
h1, h2 N

h1, h2

Golden Shoe Exploit

28

• are crucial to the proof. Specifically “Zero knowledge requires
that discrete logs of , relative to each other modulo exist (i.e. that

, generate the same group)

• During KeyGen, a malicious verifier can pick ANY and send them
to all parties.

N, h1, h2
h1, h2 N

h1, h2

N, h1, h2
n − 1

Golden Shoe Exploit

29

• are crucial to the proof. Specifically “Zero knowledge requires
that discrete logs of , relative to each other modulo exist (i.e. that

, generate the same group)

• During KeyGen, a malicious verifier can pick ANY and send them
to all parties.

• We focus on a range proof (due to its relative simplicity). Proving that a
Paillier ciphertext encrypts a bound secret .

N, h1, h2
h1, h2 N

h1, h2

N, h1, h2
n − 1

xi < B

Golden Shoe Exploit

30

• In the first step the prover uses the parameters to produce a
Pedersen commitment in a group of unknown order :
and send to the verifier.

N, h1, h2
z = hxi

1 hρ
2 mod N

z

Golden Shoe Exploit

31

• In the first step the prover uses the parameters to produce a
Pedersen commitment in a group of unknown order :
and send to the verifier.

• Assume the verifier picks : we are left with

N, h1, h2
z = hxi

1 hρ
2 mod N

z

h2 = 1 z = hxi
1 mod N

Golden Shoe Exploit

32

• In the first step the prover uses the parameters to produce a
Pedersen commitment in a group of unknown order :
and send to the verifier.

• Assume the verifier picks : we are left with

• {Option 1}: pick and pick very large such that is computed
over the integers => solve for by trial and error

• {Option 2}: Choose to be a composite with small prime factors => use
Polling Hellman and field seive on each factor

N, h1, h2
z = hxi

1 hρ
2 mod N

z

h2 = 1 z = hxi
1 mod N

h1 = 2 N hxi
1

xi

N

Golden Shoe Exploit

33

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

34

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all partiesN, h1, h2

35

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol

N, h1, h2

t

36

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol.

3. The attacker will learn all secret key shares

N, h1, h2

t

37

Golden Shoe Exploit
• The attack can be mounted by a single party given persistence during

KeyGen and at least one Signing :

1. During DKG: Attacker broadcasts to all parties

2. During a single signature all parties send corrupted range proofs to the
attacker as part of MtA sub protocol.

3. The attacker will learn all secret key shares

4. Signature will pass verification

N, h1, h2

t

38

Golden Shoe Mitigation
• The verifier must prove correctness of N, h1, h2

39

Takeaways
• MPC and TSS offer high assurance on

paper thanks to math proofs, but
remain susceptible to
misimplementations or overlooked
threat vectors

• Should I use TSS ?

@OmerShlomovits, omer@ZenGo.com
40

https://twitter.com/OmerShlomovits
mailto:omer@ZenGo.com

