Threshold ECDSA in practice

JP Aumasson, Adrian Hamelink, Chervine Majeri (Taurus Group) Based on joint work with Omer Schlomovits (ZenGo)

Agenda

Introduction: motivations and basic notions and formalism (JP)

ECDSA & MPC: viewing threshold ECDSA as an MPC functionality (Adrian)

Protocols: overview of the main protocols and their properties (Adrian)

Real-world: review of needs, security models, assumptions (JP/Chervine)

Conclusion: thoughts and open problems (JP)

Introduction

Background & motivations

Research unit of **Taurus Group** - <u>taurusgroup.ch</u>

- Digital asset infrastructure for financial organizations
- Need security, reliability, maintainability, and usability
- Protocol using an HSM's TEE for signing, quorum validation, security controls

How to leverage threshold crypto to offer an HSM-free alternative? What are "real-world" security and performance needs? What protocol and libraries are acceptable?

A Survey of ECDSA Threshold Signing

Attacking Threshold Wallets*

Jean-Philippe Aumasson Taurus Group Switzerland jp@taurusgroup.ch Adrian Hamelink
Taurus Group
Switzerland
adrian.hamelink@taurusgroup.ch

Omer Shlomovits

ZenGo X

Israel

omer@kzencorp.com

JP Aumasson $^{\dagger 1}$ and Omer Shlomovits 2 1 Taurus Group, Switzerland 2 ZenGo X, Israel

Threshold signing motivations

Distributing trust, avoid a SPoF, enable "4-eye control"

Off-chain quorum mechanism, coin-agnostic, hiding governance patterns

Multi-signatures require multiple keys, work differently for different platforms

Alternative / complement to HSMs/TEEs, but address different needs

Efficient schemes for RSA, Schnorr sigs (including Ed25519), ECDSA is harder

Threshold signing?

2 protocols, although keygen can be centralized when it makes sense:

(t, n) parameters where t+1 shares are necessary and sufficient to sign

Distributed key generation (DKG): **n** parties obtain shares of a private key

Signing: t+1 parties use their share to collectively sign a given message

ECDSA & MPC

Classic ECDSA

$$sk \in Z_q$$
, $pk = sk \cdot G$, message m, $H(m) \in Z_q$

Sign _{sk} (m)	Verify _{pk} ((r,s), m)
 Sample random k in Z[*]_q R = k•G = (r_x, r_y), r = r_x (mod q) s = k⁻¹ (H(m) + r • sk) (mod q) Output (r, s) 	 R' = [H(m)s⁻¹]•G + [rs⁻¹]•pk = (r'_x, r'_y) Check r'_x (mod q) = r

Classic ECDSA to threshold ECDSA?

$$sk \in Z_q$$
, $pk = sk \cdot G$, message m, $H(m) \in Z_q$

Threshold \Rightarrow use secret sharing for sk and k

Sign _{sk} (m)	Verify _{pk} ((r,s), m)
 Sample random k in Z[*]_q R = k•G = (r_x, r_y), r = r_x (mod q) s = k⁻¹ (H(m) + r • sk) (mod q) Output (r, s) 	 R' = [H(m)s⁻¹]•G + [rs⁻¹]•pk = (r'_x, r'_y) Check r'_x (mod q) = r

Threshold ECDSA as an MPC functionality

Secrets are now shared, i.e. $\mathbf{sk} \rightarrow [\mathbf{sk}]$ with $\mathbf{sk} = \mathbf{sk}_1 + \cdots + \mathbf{sk}_n$, $[\mathbf{pk}] = [\mathbf{sk}] \cdot \mathbf{G}$

Formulate $Sign_{[sk]}$ using Arithmetic Black Box (ABB) functionality:

$$[r] \leftarrow \text{Rand()} \qquad \qquad r \in Z_q$$

$$[c], [a], [b] \leftarrow \text{RandMul()} \qquad c = ab$$

$$x \leftarrow \text{Open(}[x]\text{)} \qquad \qquad x \in Z_q$$

$$[c] \leftarrow \text{Mul(}[a], [b]\text{)} \qquad c = ab \in Z_q$$

$$[z] \leftarrow a \cdot [x] + b \cdot [y] \qquad \qquad z = ax + by \in Z_q$$

$$[X] \leftarrow [x] \cdot G \qquad \qquad x \in Z_q, X = x \cdot G \in \langle G \rangle$$

ABB Example: Multiplication



$[z] \leftarrow Mult([x], [y])$:

- [c], [a], [b] ← RandMul()
- $\delta \leftarrow \text{Open([a] [x])}$
- ε ← Open([b] [y])
- $[z] \leftarrow [c] \delta[b] \epsilon[a]$

ABB Example: Inversion

$[y] \leftarrow Invert([x])$:

- [b] ← Rand()
- $[z] \leftarrow Mul([x], [b])$
- $z \leftarrow Open([z])$ z = x b
- $[y] \leftarrow z^{-1}[b]$ $y = (x b)^{-1} b = x^{-1}$

Threshold ECDSA as an MPC functionality

PreSign	Sign
 - [k] ← Rand() - [b] ← Rand() - [e] ← Mul([b],[k]) e = b k - [f] ← Mul([b],[sk]) f = b sk - e ← Open([e]) e = b k - [t] ← e⁻¹•[f] t = (bk)⁻¹ f = k⁻¹ sk - [k⁻¹] ← e⁻¹•[b] k⁻¹ - R ← Open([k]•G) R = k•G = (r_x, r_y) Store (r_x, [k⁻¹], [t]) 	 Retrieve (r_x, [k⁻¹], [t]) [s] ← H(M)•[k⁻¹] + r_x•[t] s ← Open([s]) s = k⁻¹•H(M) + k⁻¹•r_x•sk k⁻¹ (H(M) + r_x•sk) Output (r_x,s)

ECDSA without generic MPC?

Without MPC, we must be careful with **privacy** and **correctness**

Blinding factors helps hide secrets when revealed

Prove correctness by

- Proving computations in zero-knowledge
- Commit to values before publishing
- Verify algebraic relations

Shared secret multiplication

How to compute $[z] = [x] \cdot [y]$?

$$z = x \cdot y = (x_1 + \dots + x_n) \cdot (y_1 + \dots + y_n) = \sum_{i,j} x_i \cdot y_j = \sum_{i,j} x_i \cdot y_i$$

Multiplicative-to-Additive conversion (MtA) protocol:

$$a \cdot b = c \rightarrow \alpha + \beta = c$$

 $z_i = x_i \cdot y_i + \sum_{i \neq i} a_{i,i} + b_{i,i}$

Multiplicative-to-Additive share conversion

Using Homomorphic encryption

Alice: X		Bob : y
c ← Enc _A (x)	C →	b ← \$ Z _q
a ← Dec _A (c')	← C'	c' \leftarrow (c \odot Enc _A (y)) \oplus Enc _A (-b) c' = Enc _A (x \cdot y - b)

 $a + b = (x \cdot y - b) + b = x \cdot y$

Security concerns

Same unforgeability property wanted

Threshold optimal \Rightarrow t = n - 1 \Rightarrow dishonest majority \Rightarrow no **robustness**

Parties must abort when checks go wrong

Identification helps eject misbehaving parties

Type of adversary (active vs. passive)

Universal Composability (UC) proof

Protocols

2018, first efficient constructions

Fast Multiparty Threshold ECDSA with Fast Trustless Setup

Rosario Gennaro¹ and Steven Goldfeder²

City University of New York rosario@cs.ccny.cuny.edu ² Princeton Universty[§] goldfeder@cornell.edu Paillier as homomorphic scheme

Explicitly verify all computations

Fast Secure Multiparty ECDSA with Practical Distributed Key Generation and Applications to Cryptocurrency Custody*

Yehuda Lindell[†]

Samuel Ranellucci[‡]

Ariel Nof[†]
October 14, 2018

UC security

Paillier or OT based MtA

Verify result "in-the-exponent" with ElGamal commitments

Gennaro and Goldfeder '20

- [k], [b] + Rand(), [B] + [b]•G, commit to B_i
- [v] \leftarrow Mult([k], [b]), [t] \leftarrow Mult([k], [sk]), check with pk
- v ← Open([v]), v = k b
- B ← Open([B]), verify decommit
- $R \leftarrow v^{-1} \cdot B = (k^{-1} b^{-1}) (b \cdot G) = k^{-1} \cdot G$, $[V] \leftarrow [k] \cdot B$, prove using MtA msgs
- V ← Open([V]), verify V = v•G
- $[s] \leftarrow m \cdot [k] + r \cdot [t]$,
- s ← Open([s])

2019-2020, design trade-offs

Threshold ECDSA from ECDSA Assumptions: The Multiparty Case

Jack Doerner
j@ckdoerner.net
Northeastern University

Northeastern University

Eysa Lee eysa@ccs.neu.edu

Yashvanth Kondi ykondi@ccs.neu.edu Northeastern University

abhi shelat
abhi@neu.edu
Northeastern University

May 22, 2020

OT based Multiplication

Logarithmic rounds *but* constant number of operations

Bandwidth-efficient threshold EC-DSA

Guilhem Castagnos¹, Dario Catalano², Fabien Laguillaumie³, Federico Savasta^{2,4}, and Ida Tucker³

GG18

Paillier → Class group MtA

 $^{^{\}rm 1}$ Université de Bordeaux, INRIA, CNRS, IMB UMR 5251, F-33405 Talence, France. $^{\rm 2}$ Università di Catania, Italy.

³ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.
⁴ Scuola Superiore di Catania, Italy

2020, more security features

One Round Threshold ECDSA with Identifiable Abort

Rosario Gennaro
The City University of New York
rosario@ccny.cuny.edu

Steven Goldfeder Cornell Tech/Offchain Labs goldfeder@cornell.edu Detection and attribution of misbehavior via secure "aborts"

UC Non-Interactive, Proactive, Threshold ECDSA

Ran Canetti*

Nikolaos Makriyannis †

Udi Peled[†]

May 8, 2020

Use Paillier as commitments
Proactive key refresh
Only 4 rounds (3 offline)

Abort with identification

Detect misbehaving users:

- Failure to verify ZK proof
- Consistency of R using Enc(k_i) from MtA in Mul([k],[sk])
- Valid decommitment
- Algebraically [k]•R = G, and pk = [t]•R where $R = k^{-1}$ •G and t = k sk
- Verify signature

Identification protocol needed for last two checks.

Proactive key refresh

If [0] is a secret sharing of 0 with shares 0_i for party i, then [z] = [x] + [0] is a new secret sharing of [x] but with different shares.

In **Refresh+AuxInfo** protocol, each party distributes shares of [0⁽ⁱ⁾]

$$[sk'] = [sk] + \sum_{i} [O^{(i)}]$$

Auxiliary parameters such as Paillier keys, and Pedersen are also regenerated.

Old shares are no longer valid.

GG '20 + CMP '20 = CGGMP '20

UC Security

Proactive key refresh in 3 rounds

Non interactive signing

Two protocols for presigning & identification

- 3 offline rounds + O(n²) cost for identification
- 6 offline rounds + O(n) cost for identification

Protocols comparison (from CGGMP '20)

Signing Protocol	Rounds	Group Ops	Ring Ops	Communication	Proactive	ID Abort	UC
Gennaro and Goldfeder [26]	9	10 <i>n</i>	50 <i>n</i>	$10\kappa + 20N$ (7 KiB)	×	X	X
Lindell et al. [37] (Paillier) ^{†‡}	8	80 <i>n</i>	50 <i>n</i>	$50\kappa + 20N$ (7.5 KiB)	×	×	1
Lindell et al. [37] (OT) [†]	8	80 <i>n</i>	0	50κ (190 KiB)	×	×	1
Doerner et al. [23]	$\log(n) + 6$	5	0	$10 \cdot \kappa^2$ (90 KiB)	×	X	1
Castagnos et al. [16]*	8	15 <i>n</i>	0	100 · κ (4.5 KiB)	×	×	X
This Work: Interactive§	4 or 7	10 <i>n</i>	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	1
This Work: Non-Int. Presign§	3 or 6	10 <i>n</i>	90 <i>n</i>	$10\kappa + 50N$ (15 KiB)	1	1	1
This Work: Non-Int. Sign	1	0	0	κ (256 bits)	1	1	1

Real-world crypto

Use cases

Shares should be controlled by different entities

"Simple" cases:

- B2C company with 2-party wallet shared control
- Multiple organizations sharing control of a wallet

Less simple cases (operation segregation needs):

- Cold wallet of a single organization (few addresses, high latency ok)
- Hot wallet a single organization (many addresses, need low latency)
 - How to do BIP32/44 efficiently?
 - Depends on the pooling model (relation between addresses and owners)

Security models vs. reality

Corruption:

- Static more realistic most of the time, so adaptive security safer
- Rarely the ability to "corrupt" one part, "uncorrupt" it to "corrupt" another
- Either a system is to be trusted (for some time), or it's not and then it's forever

Protocol obedience:

- Malicious models a compromised system
- Honest-but-curious makes little sense

Majority:

- It depends: with 2-2 you need dishonest majority
- Might be cases with a large **n** and small **t** where honest majority makes sense

Software implementing TSS

2 main open-source libraries used in production:

Binance's https://github.com/binance-chain/tss-lib (Go)

Zengo's https://github.com/ZenGo-X/multi-party-ecdsa (Rust)

Reviewed in detail in our survey, we did paid security audits of both

Recent lib by **ING bank** https://github.com/ing-bank/threshold-signatures/ (With Omer we found and reported some bugs)

Some organizations have non-OSS code, partially relying on OSS (arithmetic, etc.)

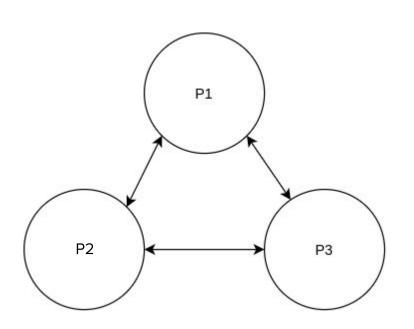
Deployment constraints

Most papers describing protocols assume that

- Key distribution is in place and safe (enabling secure channels)
 - Usually fine
- Communication is lossless and in-order (thus reliable) and low-latency
 - Not always the case
- Practical aspects of deployment often missing
 - Protocol limitations (GG18/20) may impact deployment potential
 - Slower signatures means scalability at infrastructure-level is important

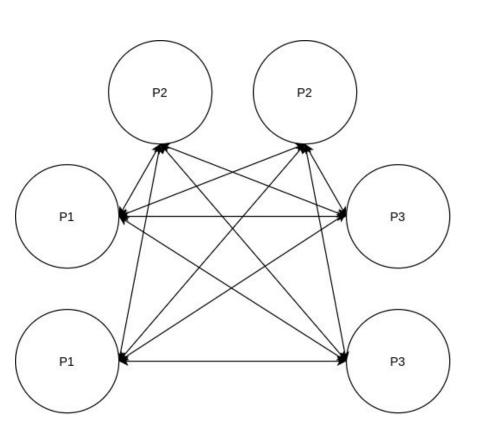
How would "less simple" deployment work in practice?

Naive deployment



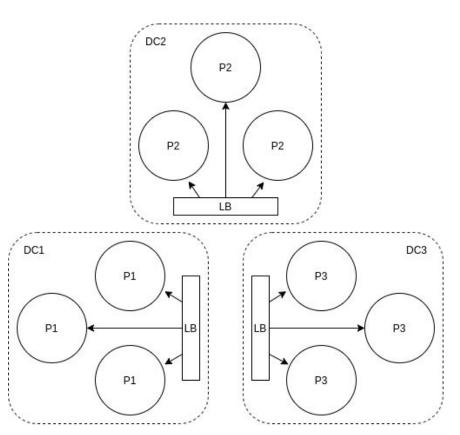
- Exactly mirrors crypto diagrams
- Doesn't hold up in practice
 - No scalability
 - No failover
- Improvement: Support rolling out multiple instance of the same party.

Impractical deployment



- Multiple instances of each party with a mesh network
- Addresses scalability issues
- Mesh networks across different clouds is impractical/hard.

Robust deployment



- One party in each DC means segregation of duty is possible
- Access via load-balancer is standard
- DCs can scale their instances horizontally w/o any change to configuration
- Some engineering tricks to perform multiple rounds with the same participant for each party

Performance

Benchmark notes from a **robust deployment**:

- Keygen: 7-8s
 - 5s to generate safe primes
 - 1s for the other operations
 - WAN overhead 700ms
- Signature: 2-3s
 - 400ms for each of the two (optional*) MtAwc proof
 - 300ms for each of the two (optional*) MtAwc verifications
 - WAN overhead 900ms

Conclusions

Theory + practice = 🙌

Non-trivial protocols driven by practical needs

- Lindell and GG18 were game-changers
- CMP with aborts checking most of the boxes

Some protocols in production and battle-tested

Crypto addresses part of the problem, main real-world risks related to

- Implementation matching of described provensecure protocol
- Platform trust, software assurance, access control, back-ups, etc.

Open problems and challenges

NIST standardization ongoing https://csrc.nist.gov/Projects/threshold-cryptography

Formal verification of TSS-based protocols and software?

BTC supports Schnorr, BLS getting adoption; TSS ECDSA soon useless?:)

BIP32/HKD is not easy to threshold