Threshold ECDSA in practice

JP Aumasson, Adrian Hamelink, Chervine Majeri (Taurus Group)
Based on joint work with Omer Schlomovits (ZenGo)

Agenda

Introduction: motivations and basic notions and formalism (JP)

ECDSA & MPC.: viewing threshold ECDSA as an MPC functionality (Adrian)
Protocols: overview of the main protocols and their properties (Adrian)
Real-world: review of needs, security models, assumptions (JP/Chervine)

Conclusion: thoughts and open problems (JP)

Introduction

Background & motivations

Research unit of Taurus Group - taurusgroup.ch
e Digital asset infrastructure for financial organizations
e Need security, reliability, maintainability, and usability
e Protocol using an HSM’s TEE for signing, quorum validation, security controls

How to leverage threshold crypto to offer an HSM-free alternative?
What are “real-world” security and performance needs?
What protocol and libraries are acceptable?

. . s) *
A Survey of ECDSA Threshold Signing Attackmg Threshold Wallets
Jean-Philippe Aumasson Adrian Hamelink Omer Shlomovits JP Aumasson’! and Omer Shlomovits?
Taurus Group Taurus Group ZenGo X
Switzerland Switzerland Israel !Taurus Gl‘Ollp, Switzerland
Jjp@taurusgroup.ch adrian.hamelink @ taurusgroup.ch omer@kzencorp.com 27enGo X, Israel
3 5l

eprint.iacr.org/2020/1390 eprint.iacr.ora/2020/1052

https://taurusgroup.ch
https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2020/1052

Threshold signing motivations

Distributing trust, avoid a SPoF, enable “4-eye control”

Off-chain quorum mechanism, coin-agnostic, hiding governance patterns
Multi-signatures require multiple keys, work differently for different platforms
Alternative / complement to HSMs/TEEs, but address different needs

Efficient schemes for RSA, Schnorr sigs (including Ed25519), ECDSA is harder

Threshold signing?

2 protocols, although keygen can be centralized when it makes sense:
(t, n) parameters where t+1 shares are necessary and sufficient to sign
Distributed key generation (DKG): n parties obtain shares of a private key

Signing: t+1 parties use their share to collectively sign a given message

ECDSA & MPC

Classic ECDSA

sk € Zq, pk = skeG, message m, Him) € Zq

Sign_, (m) Verifypk((r,s), m)
e Sample randomk in Z*q o R =[HmM)sG+[rs" Jepk=(r, r)
¢ R=kG=(r, ry), r=r_(mod q) e Checkr (modq)=r
e s=k'(H(m)+r-.sk)(mod q)
e Output(r,s)

Classic ECDSA to threshold ECDSA ?

sk € Zq, pk = skeG, message m, Him) € Zq

Threshold = use secret sharing for sk and k

Sign_, (m) Verifypk((r,s), m)
e Sample random k in Z*q o R =[HmM)sG+[rs" Jepk=(r, r)
o R=kG=(r, ry), r=r_(mod q) e Checkr (modq)=r
e s=k'(Hm)+r-.sk)(modq)
e Output(r,s)

Threshold ECDSA as an MPC functionality

Secrets are now shared, i.e. sk = [sk] with sk =sk +~+sk , [pk]=[sk]+G

Formulate Slgn usmg Arithmetic Black Box (ABB) functionality:

[r] « Rand() r e Zq

[c], [a], [b] « RandMul() c=ab

X « Open([x]) xEZq

[c] « Mul([a], [b]) c=ab & Z
[z]«a«[x]+Dbe]y] z=ax+byEZq

[X]«[x]+ G X € Z,X=xG € <G>

ABB Example: Multiplication

Secure Multiplication 2] « Mult([x]. [v]);
With a Beaver Triple - [c], [a], [b] « RandMul()
: Given sharings - e Open([a] - [X])

+" [a), [b),[c] = [ab]
. b - £« Open(b]-[v])

How to get [xy]?
- [z] «[c]-J[b] - €[a]

Reconstruct
* §=[a—x]
c e=[b-y]

Compute (locally)

* [xyl]
= [c] — 8[b] — €la]

Credit: A. Yanai https://twitter.com/i/status/1324424768649601024

https://twitter.com/i/status/1324424768649601024

ABB Example: Inversion

[v] « Invert((x]):
- [b] « Rand()
]

- [z] « Mul([x], [b])
- 7 ® Open([z]) z =xb
- [yl « z'[b] y=(xb)'b=x"

Threshold ECDSA as an MPC functionality

PreSign Sign
- [K] « Rand() - Retrieve (r, [k, [t])
- [b] « Rand() - [s]« HM)[KT] +1 o[t]

- [e]« Mul([b][k])
- [f] « Mul([b],[sk])

- e« Open(e
- [t « e [f]
- [k« e [b]

)

R « Open(k]-G)

Store (r,

k™, [t)

e=bk

f =b sk

e=bk

t =(bk)'f=k'sk
k—’l

R=k:G=(r, ry)

- S« Open([S])
)

s = kTsH(M) + k'lor esk
k' (H(M) + 1 +sk)

Output (r,s)

ECDSA without generic MPC?

Without MPC, we must be careful with privacy and correctness
Blinding factors helps hide secrets when revealed
Prove correctness by

- Proving computations in zero-knowledge

- Commit to values before publishing

- Verify algebraic relations

Shared secret multiplication
How to compute [z] = [Xx] « [y] ?
22Xy =) YY) =T Xy, = 2
Multiplicative-to-Additive conversion (MtA) protocol:

asb=c=a0+=c

=¥ eV + +
£ =XY, Zi;tj 9 bi,j

Multiplicative-to-Additive share conversion

Using Homomorphic encryption

Alice: x Bob: y
c « Enc, (x) c= b «$ Z,
«C C’ « (c®Enc, (y))®Enc, (-b)
a « Dec,(c’)

c’'=Enc,(x-y - b)

a+b=(xy-b)+b=xey

Security concerns

Same unforgeability property wanted

Threshold optimal = t =n - 1 = dishonest majority = no robustness
Parties must abort when checks go wrong

Identification helps eject misbehaving parties

Type of adversary (active vs. passive)

Universal Composability (UC) proof

Protocols

2018, first efficient constructions

Fast Multiparty Threshold ECDSA with Fast Trustless

Setup

Rosario Gennaro! and Steven Goldfeder?

! City University of New York

rosario@cs.ccny.cuny.edu

g, 2,
2 Princeton Universty®

goldfeder@cornell.edu

Fast Secure Multiparty ECDSA with Practical
Distributed Key Generation and Applications to
Cryptocurrency Custody*

Yehuda Lindell Ariel Noff Samuel Ranelluccit

October 14, 2018

Paillier as homomorphic scheme

Explicitly verify all computations

UC security
Paillier or OT based MtA

Verify result “in-the-exponent” with
ElGamal commitments

Gennaro and Goldfeder ‘20

e [k], [b]« Rand(), [B]«[b]-G, committo B

e [v]<« Mult(k], [b]), [t] « Mult([k], [sk]), check with pk

e Vve«Open(v])), v=kb

e B« Open(B]), verifydecommit

¢ ReveB=(k'b") (b-G)=k'. G, [V] « [k]-B, prove using MtA msgs
e Ve« Open(V]), verifyV=v.G

® [s]em-.[k]+r-[t],

® s« Open(s]

2019-2020,design trade-offs

Threshold ECDSA from ECDSA Assumptions:

The Multiparty Case

Jack Doerner Yashvanth Kondi
jOckdoerner.net ykondi@ccs.neu.edu
Northeastern University Northeastern University
Eysa Lee abhi shelat
eysa@ccs.neu.edu abhi@neu.edu
Northeastern University Northeastern University

May 22, 2020

Bandwidth-efficient threshold EC-DSA

Guilhem Castagnos!, Dario Catalano?, Fabien Laguillaumie®,

Federico Savasta®*, and Ida Tucker?

! Université de Bordeaux, INRIA, CNRS, IMB UMR 5251, F-33405 Talence, France.

2 Universita di Catania, Italy.

3 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.

4 Scuola Superiore di Catania, Italy

OT based Multiplication

Logarithmic rounds but
constant number of operations

GG18
Paittter = Class group MtA

2020, more security features

One Round Threshold ECDSA with Identifiable Abort

Rosario Gennaro Steven Goldfeder
The City University of New York Cornell Tech/Offchain Labs
rosario@ccny.cuny.edu goldfeder@cornell.edu

UC Non-Interactive, Proactive, Threshold ECDSA

Ran Canetti* Nikolaos Makriyannis' Udi Peled!

May 8, 2020

Detection and attribution of
misbehavior via secure “aborts”

Use Paillier as commitments
Proactive key refresh

Only 4 rounds (3 offline)

Abort with identification

Detect misbehaving users:

- Failure to verify ZK proof

- Consistency of R using Enc(k;) from MtA in Mul([k],[sk])

- Valid decommitment

- Algebraically [k]-R = G, and pk =[t]-R where R=k'-G and t = k sk
- Verify signature

|dentification protocol needed for last two checks.

Proactive key refresh

If [O] is a secret sharing of O with shares O, for party i,
then [z] = [x] + [O] is a new secret sharing of [x] but with different shares.

In Refresh+Auxinfo protocol, each party distributes shares of [0!]
[sk’]=[sk] + %, [O'"]

Auxiliary parameters such as Paillier keys, and Pedersen are also
regenerated.

Old shares are no longer valid.

GG 20 + CMP 20 = CGGMP ‘20

UC Security

Proactive key refresh in 3 rounds

Non interactive signing

Two protocols for presigning & identification

o 3 offline rounds + O(n?) cost for identification
o 6 offline rounds + O(n) cost for identification

Protocols comparison (from CGGMP ‘20)

Signing Protocol Rounds Gg;z;p Ing Communication Proactive A{)Dort uc
Gennaro and Goldfeder [26] 9 10n 50n 10k + 20N (7 KiB) X X X
Lindell et al. [37] (Paillier) ™+ 8 80n | 50n | 50k + 20N (7.5 KiB) X X v
Lindell et al. [37] (OT)" 8 80n 0 50k (190 KiB) X X v/
Doerner et al. [23] log(n) +6 5 0 10 - k2 (90 KiB) X X v
Castagnos et al. [16]" 8 15n 0 100 - k (4.5 KiB) X X X
This Work: Interactive® 4 or7 10n | 90n | 10k 4+ 50N (15 KiB) v v v
This Work: Non-Int. Presign® 3oré6 10n | 90n | 10k + 50N (15 KiB) v v v
This Work: Non-Int. Sign 1 0 0 K (256 bits) v v v

Real-world crypto

Use cases

Shares should be controlled by different entities

“Simple” cases:
e B2C company with 2-party wallet shared control
e Multiple organizations sharing control of a wallet

Less simple cases (operation segregation needs):
e Cold wallet of a single organization (few addresses, high latency ok)
e Hot wallet a single organization (many addresses, need low latency)
o How to do BIP32/44 efficiently?
o Depends on the pooling model (relation between addresses and owners)

Security models vs. reality

Corruption:
e Static more realistic most of the time, so adaptive security safer
e Rarely the ability to “corrupt” one part, “uncorrupt” it to “corrupt” another
e FEither a system is to be trusted (for some time), or it’s not and then it’s forever

Protocol obedience:
e Malicious models a compromised system
e Honest-but-curious makes little sense

Majority:
e |t depends: with 2-2 you need dishonest majority
e Might be cases with a large n and small t where honest majority makes sense

Software implementing TSS

2 main open-source libraries used in production:

Binance’s https://github.com/binance-chain/iss-lib (Go)

Zengo’s https://github.com/ZenGo-X/multi-party-ecdsa (Rust)

Reviewed in detail in our survey, we did paid security audits of both

Recent lib by ING bank https://github.com/ing-bank/threshold-signatures/
(With Omer we found and reported some bugs)

Some organizations have non-OSS code, partially relying on OSS (arithmetic, etc.)

https://github.com/binance-chain/tss-lib
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ing-bank/threshold-signatures/

Deployment constraints

Most papers describing protocols assume that

e Key distribution is in place and safe (enabling secure channels)
o Usually fine

e Communication is lossless and in-order (thus reliable) and low-latency
o Not always the case

e Practical aspects of deployment often missing
o Protocol limitations (GG18/20) may impact deployment potential

o Slower signatures means scalability at infrastructure-level is important

How would “less simple” deployment work in practice?

Naive deployment

e Exactly mirrors crypto diagrams

e Doesn’t hold up in practice
o No scalability
o No failover

e Improvement: Support rolling out
multiple instance of the same party.

Impractical deployment

e Multiple instances of each party with a
‘ 0 mesh network
e Addresses scalability issues

‘ ‘\ e Mesh networks across different clouds

is impractical/hard.

- " e One party in each DC means

segregation of duty is possible

e Access via load-balancer is standard

| L | e DCs can scale their instances
—— I S — - horizontally w/o any change to

e ey configuration

ST ik |

: A . . ® Some engineering tricks to perform
E P1 < LB ; LB » P3 i . .

| RIS i multiple rounds with the same

I | participant for each party

Performance

Benchmark notes from a robust deployment:

e Keygen: /-8s
o bsto generate safe primes
o 1s for the other operations
o WAN overhead 700ms

e Signature: 2-3s
o 400ms for each of the two (optional*) MtAwc proof
o 300ms for each of the two (optional*) MtAwc verifications
o WAN overhead 900ms

Conclusions

NV

Theory + practice =

Non-trivial protocols driven by practical needs

e Lindell and GG18 were game-changers

e CMP with aborts checking most of the boxes
Some protocols in production and battle-tested

Crypto addresses part of the problem, main real-world risks related to

e Implementation matching of described provensecure protocol
e Platform trust, software assurance, access control, back-ups, etc.

Open problems and challenges

NIST standardization ongoing https://csrc.nist.gov/Projects/threshold-cryptography

Formal verification of TSS-based protocols and software?
BTC supports Schnorr, BLS getting adoption; TSS ECDSA soon useless? ;)

BIP32/HKD is not easy to threshold

https://csrc.nist.gov/Projects/threshold-cryptography

