From Quantum Physics to Post-Quantum Digital Security

JP Aumasson

Sorry, this product is no longer available!

① See larger image

Health Benefits:

- 1. Reduces inflammation.
- 2. Promotes unclamping of cells.
- 3. Enhances immune and endocrine systems.
- 4. Helps to protect DNA from damage.
- 5. Improves stamina, endurance and strength.
- 6. Alleviates soreness, aches and pains, and improves flexibility.
- 7. Helps to retard the ageing process.
- 8. Helps to fight cancer cells.
- 9. Has the ability to destroy viruses and bacteria.
- 10. Enhances cellular nutrition and detoxification.
- 11. Enhances cellular permeability.
- 12. Increases energy.
- 13. Strengthens the body's biofield preventing electro-magnetic waves from affecting one's health.
- 14. Increases focus and concentration.
- 15. Improves blood Circulation.
- 16. Energizes block cells and reduces "stickiness".

Item sold out

Add to Favorite Items - (0)

Quantum computer

Generalizes to more than 2 states: qutrits, qubytes, etc. Quantum computing = reversible evolution of a qubits groups $\frac{1}{2}$

0 with probability $|\alpha|^2$ **Qubit** $\alpha |0\rangle + \beta |1\rangle$ Observe 1 with probability $|\beta|^2$ Stay 0 or 1 forever

- Complex, negative "probabilities" (amplitudes), real randomness

Quantum computers operate on values in "superposition" But they do not try every answer in parallel and pick the best one

Quantum parallelism

Quantum speedup

When quantum computers can s than any classical computers

"Exponential quantum speedup":

Very few computing problems admit a quantum speedup A quantum computer is not a faster computer!

When quantum computers can solve a computing problem faster

Quantum computing vs. crypto

- "Shor's algorithm" solves the following problems efficiently:
- Finds p given n = pq
- Finds **d** given $\mathbf{y} = \mathbf{x}^{d} \mod \mathbf{p}$
- As a result, all public-key crypto is **broken**
- HTTPS connections, SSH, VPNs
- Bitcoin and most cryptocurrencies

We're not there yet

Post-quantum cryptography

- A.k.a. "quantum-safe", "quantum-resilient"
- Algorithms not broken by a quantum computer...
- Must not rely on factoring or discrete logarithm problems
- Must be well-understood with respect to quantum
- Has nothing to do with "quantum cryptography" :-)

Why care?

Post-quantum crypto is an **insurance**

CSO reasoning:

- "I think QC has a probability p work in year 2YYY"
- "I have information worth \$\$\$ to protect until 2YYY+N"
- "I'd like to eliminate this risk"

Why care?

Post-quantum crypto is an **insurance**

CSO reasoning:

- "I think QC has a probability p work in year 2YYY"
- "I have information worth \$\$\$ to protect until 2YYY+N"
- "I'd like to eliminate this risk"
- "And I have reduced all higher risks" (realistic?)

Why care?

NSA recommendations for National Security Systems

"we anticipate a need to shift to quantum-resistant cryptography in the near future."

(In CNSS advisory 02-15)

Post-quantum signatures: the simplest example

A.k.a. "one-time signatures" (1979)

- 1. Generate a key pair
- 2. To sign the bit 0, show K_0 , to sign 1 show K_1

- Pick random strings K_0 and K_1 (the private key) - The public key is the two values $H(K_0)$, $H(K_1)$

Hash-based signatures

Like one-time signatures, but with many keys...

- ... represented in a compact way, using a **binary tree**

Many-time signatures

When a new one-time key \mathbf{K}_i , is used...

... give its authentication path to the tree's root

Takeaways

- A quantum computer is **not a faster** computer!
- Useful quantum computers unlikely before 50 (?) years from now —
- You can already buy an insurance! **Post-quantum cryptography**
- Bitcoin/blockchain can wait: signatures can be replaced later, unlike encrypted messages

- A quantum computer works directly on subatomic particles, to create quantum bits (qubits) that follow quantum mechanics law

Thank you!

https://aumasson.jp https://twitter.com/veorg

jp.aumasson@kudelskisecurity.com https://kudelskisecurity.com

