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For a permutation family {Pk}k (e.g., AES-128)

Standard distinguisher:
I k chosen at random
I attacker makes black-box queries to Pk and P−1

k
I attacker returns 0 or 1

Known-key distinguisher:
I k chosen at random
I attacker analyzes algorithms of Pk and of P−1

k (white-box)
I attacker returns x1, . . . , xN such that

R(x1, . . . , xN , Pk (x1), . . . , Pk (xN)) = 1

for some nontrivial relation R
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For a permutation P (e.g., AES-128 without AddRoundKey)

No-key distinguisher:
I attacker analyzes algorithms of P and of P−1 (white-box)
I attacker returns x1, . . . , xN such that

R(x1, . . . , xN , P(x1), . . . , P(xN)) = 1

for some nontrivial relation R

Zero-sum distinguisher = no-key distinguisher where

R(x1, . . . , xN , P(x1), . . . , P(xN)) = 1

iff
N⊕

i=1

xi =
N⊕

i=1

P(xi) = 0
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How to find zero-sums (x1, . . . , xN)?

Case study: the permutation of Keccak (SHA-3 candidate)
I 1600-bit state
I 18 nonidentical rounds

I one round has algebraic degree 2 (wrt GF(2))
I one inverse round has algebraic degree 3

10 rounds: degree upper bound 210 = 1024 (suboptimal)
⇒ high-order differential distinguisher in 21024

13 rounds: degree upper bound 213 � 1599 (optimal)
⇒ high-order differential distinguisher
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Consider 257 variables in intermediate state after 5 rounds
I preimage = degree-243 mapping
I image = degree-256 mapping
I compute order-257 derivative in both directions

5 rounds 8 rounds
degree ≤ 35 = 243 degree ≤ 28 = 256

←−−−−−−−−−−− −−−−−−−−−−−−−−−−−−→

Obtain (x1, . . . , x2257) such that
⊕2257

i=1 xi is the order-257
derivative of a degre-256 polynomial: must be zero

⇒ zero-sum distinguisher on 13 rounds in 2257
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Optimizations: exploit structure of the (inverse) permutation

#rounds complexity

8 217

10 260

12 2128

14 2256

16 21024

(21600 ideally)
(18 rounds in full version)

Security of (reduced) hash function seems unaffected



Application to other SHA-3 candidates:

Q permutation of Luffa (256-bit)

I distinguisher on full version (8 rounds) in 281

I distinguisher on 7 rounds in 227

Pf permutation of Hamsi

I distinguisher on full version ( 512-bit) in 227

I distinguisher on full version (1024-bit) in 2729

Does not extend to attacks on hash functions. . .

Application to (reduced) KATAN and KTANTAN ciphers?


