Zero-sum distinguishers

Jean-Philippe Aumasson

For a permutation family { P}« (e.g., AES-128)

For a permutation family { P}« (e.g., AES-128)

Standard distinguisher:

» k chosen at random
» attacker makes black-box queries to P, and P, 1
» attacker returns 0 or 1

For a permutation family { P}« (e.g., AES-128)

Standard distinguisher:

» k chosen at random
» attacker makes black-box queries to P, and P, 1
» attacker returns 0 or 1

Known-key distinguisher:

» k chosen at random
» attacker analyzes algorithms of Py and of P, - ! (white-box)
» attacker returns xy, ..., x5 such that

R(X1,. - XN, P(X1), ..., Pk(xn)) = 1

for some nontrivial relation R

For a permutation P (e.g., AES-128 without AddRoundKey)

For a permutation P (e.g., AES-128 without AddRoundKey)

No-key distinguisher:

» attacker analyzes algorithms of P and of P~ (white-box)
» attacker returns xi, ..., xy such that

R(Xt, ..y Xn, P(X1), ..., P(xn)) =1

for some nontrivial relation R

For a permutation P (e.g., AES-128 without AddRoundKey)

No-key distinguisher:
» attacker analyzes algorithms of P and of P~ (white-box)

» attacker returns xi, ..., xy such that
R(Xt, ..y Xn, P(X1), ..., P(xn)) =1
for some nontrivial relation R

Zero-sum distinguisher = no-key distinguisher where

R(X1, ..., Xn, P(X1),..., P(xn)) =1

iff

How to find zero-sums (x1, ..., xy)?

Case study: the permutation of Keccak (SHA-3 candidate)
» 1600-bit state
» 18 nonidentical rounds

How to find zero-sums (x1, ..., xy)?

Case study: the permutation of Keccak (SHA-3 candidate)
» 1600-bit state
» 18 nonidentical rounds
» one round has algebraic degree 2 (wrt GF(2))
» one inverse round has algebraic degree 3

How to find zero-sums (x1, ..., xy)?

Case study: the permutation of Keccak (SHA-3 candidate)
» 1600-bit state
» 18 nonidentical rounds
» one round has algebraic degree 2 (wrt GF(2))
» one inverse round has algebraic degree 3

10 rounds: degree upper bound 2% = 1024 (suboptimal)
= high-order differential distinguisher in 21024

How to find zero-sums (x1, ..., xy)?

Case study: the permutation of Keccak (SHA-3 candidate)
» 1600-bit state
» 18 nonidentical rounds
» one round has algebraic degree 2 (wrt GF(2))
» one inverse round has algebraic degree 3

10 rounds: degree upper bound 2% = 1024 (suboptimal)
= high-order differential distinguisher in 21024

13 rounds: degree upper bound 2'3 > 1599 (optimal)
= high-erder-differential-distinguisher

Consider 257 variables in intermediate state after 5 rounds
» preimage = degree-243 mapping
» image = degree-256 mapping
» compute order-257 derivative in both directions

5 rounds 8 rounds
degree < 3% =243 degree < 28 = 256

Consider 257 variables in intermediate state after 5 rounds
» preimage = degree-243 mapping
» image = degree-256 mapping
» compute order-257 derivative in both directions

5 rounds 8 rounds
degree < 3% =243 degree < 28 = 256

Obtain (x1,. .. , Xses7) such that @2y X; is the order-257
derivative of a degre-256 polynomial: must be zero

= zero-sum distinguisher on 13 rounds in 2257

Optimizations: exploit structure of the (inverse) permutation

#rounds complexity

8 217
10 260
12 2128
14 225
16 21024

(21%% ideally)
(18 rounds in full version)

Security of (reduced) hash function seems unaffected

Application to other SHA-3 candidates:

Q permutation of Luffa (256-bit)

» distinguisher on full version (8 rounds) in 28"
» distinguisher on 7 rounds in 227

Ps permutation of Hamsi

» distinguisher on full version (512-bit) in 227
» distinguisher on full version (1024-bit) in 272°

Does not extend to attacks on hash functions. ..
Application to (reduced) KATAN and KTANTAN ciphers?

