
1

JP Aumasson – CSO @ Taurus

ZERO-KNOWLEDGE PROOFS:
SECURING THE FUTURE OF CRYPTO

/me
Co-founder & CSO of a Swiss fintech (Taurus)

● High-assurance crypto custody tech https://taurushq.com
● Used by banks to protect and manage their BTC/ETH/etc.
● Running a regulated exchange https://t-dx.com

Cryptography and vulnerability research since ~2006

● Designed crypto in the Linux kernel, Bitcoin, etc.
(SipHash, BLAKE2, BLAKE3)

● Wrote books about cryptography

https://aumasson.jp. https://twitter.com/veorq

2

https://taurushq.com
https://t-dx.com
https://aumasson.jp
https://twitter.com/veorq

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

3

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols…

Between a prover and a verifier

Which can be non-interactive

Known since the 1980s, only recently
used in practice at scale (zkSNARKS)

4

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

5

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols…

Between a prover and a verifier

Which can be non-interactive

Known since the 1980s, only recently
used in practice at scale (zkSNARKS)

6

https://www.youtube.com/watch?v=fOGdb1CTu5c

https://www.youtube.com/watch?v=fOGdb1CTu5c

The simplest ZK proof

Schnorr’s proof of knowledge of discrete logarithm (x in y = gx mod p)

7

Pick a random r, send t = gr mod p

Send a random c

Send s = r + cx mod p

Verify that gs = t × yc

It works because gs = gr + cx = gr × (gx)c = t × yc

Prover Verifier

Zero-knowledge proofs applications

Privacy of payments, and of general computation (with “zkVMs”)

Scalability – via "ZK rollups”, to preventing re-computation of smart contracts

Storage proofs, as in Filecoin’s proofs of spacetime

10

https://eprint.iacr.org/2018/046

https://eprint.iacr.org/2018/046

11

Vibrant ecosystem

aleo.org aztec.network

starkware.co z.cashprotocol.ai

arkworks.rs

Examples of major projects in the ZK space, many other initiatives and research groups

celo.org

anoma.network

This talk

Focus on zkSNARKs, a class of zero-knowledge proof systems

Fully succinct = constant proof size and linear verification time (wrt program size)

Based on my experience looking for bugs in

Groth16, used in Zcash, Filecoin, and many others

Marlin, a universal zkSNARK, used in Aleo

Circuits, and in many other related crypto

12

zkSNARKs are not the only proof systems used in practice

STARKs: no trusted setup, proof size not constant, post-quantum (StarkWare)

Bulletproofs: simpler, no trusted setup, but slower verification (Monero)

zkSNARKs and friends

13

STARK = Scalable, Transparent ARgument of Knowledge

zkSNARKs’ golden age: 2018-2020

14

https://www.wikiwand.com/en/Zero-knowledge_proof

https://www.wikiwand.com/en/Zero-knowledge_proof

Why study zkSNARKs security?
A critical component of decentralised platforms (L2 protocols, private transactions):

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

15

Why study zkSNARKs security?
A critical component of decentralised platforms (L2 protocols, private transactions):

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

As a cryptographer since ~2005, the most interesting crypto I’ve seen:

Intricate constructions with non-trivial components

“Simple but complex" – non-interactive, but many moving parts

“Multidimensional" way to reason about security

“Real-worldness”: not just papers – “code is specs”

16

What's zkSNARKs security?

Soundness: Invalid proofs should always be rejected

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

17

What's zkSNARKs security?

Soundness: Invalid proofs should always be rejected

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information

In practice, succinct proofs of large programs can leak only little data

18

What's zkSNARKs security?

Soundness: Invalid proofs should always be rejected

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information

In practice, succinct proofs of large programs can leak only little data

Completeness: Valid proofs should always be accepted

Often a DoS/usability risk that may be further exploited

All programs/circuits supported should be correctly processed

19

Who can find bugs?

A. Developers of the code (manually or via testing)

B. Developers of other projects’ code

C. External auditors of the code

D. Users of the code, accidentally 😇

E. External “attackers” 😈

Security goal: you want A|B|C to find bugs before D|E

20

Bug hunting challenges

Practical zkSNARKs are recent, thus auditors often have

Limited experience auditing zkSNARKs

Limited knowledge of the theory and of implementations’ tricks

Limited “checklist" of bugs and bug classes

Limited tooling and methodologies

Limited documentation from the projects

How to make useful work nonetheless?

21

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)

More threat analysis, to understand the application’s unique/novel risks

Practical experience: writing PoCs, circuits, proof systems, etc.

Learn previous failures, for example from…

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

22

General workflow, and failure examples

23

Computation

Circuit definition

Arithmetization

Non-interactive proof

Usage in applications

General workflow, and failure examples

24

Computation

Circuit definition

Arithmetization

Non-interactive proof

Usage in applications

The program’s logic is not secure

The circuit is not equivalent to the program

The constraint system fails to enforce a constraint

Insecure choice of primitives/parameters/properties

The application allows replays of previous proofs

Need structure/methodology..

25

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation
from fixed or user-defined circuit

What to look for, and where?

26

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Zero-knowledge greater risks

Completeness and
Soundness greater risks

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation
from fixed or user-defined circuit

Divide and conquer..

27

Field arithmetic, elliptic curves group operations

A failure in a subcomponent can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Arithmetization / constraints generation
from fixed or user-defined circuit

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Hashing, PRF, Algebraic commitment,
Randomness, Merkle trees, …

Fiat-Shamir, Polynomial commitments,
Hash-to-curve, linear algebra, …

Key/nonce management, Testing Interface, Side channels, Replays

Fast operations, multiexp, …

R1CS, AIR, polynomials, …

RNG, …

..

Understand composability conditions..

28

Security 101: Input validation must be defined, implemented, and tested

Prover/verifier
Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment

Randomness, Merkle trees Linear algebra, Multi-exp.
Polynomial commitments, Fiat-Shamir transforms, etc. etc.

Application Key management, Testing Interface, Side channels

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Contracts between components must be defined
to prevent insecure composition

Example: which component is responsible
for group membership checks?

29

Real-word crypto bugs..

Soundness – Field arithmetic (1/n)

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

30

https://github.com/appliedzkp/semaphore/issues/16

Soundness – Field arithmetic (2/n)

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

31

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

Soundness – Field arithmetic (3/n)

Missing overflow check (of a public circuit input)

https://github.com/eea-oasis/baseline/issues/34

32

https://github.com/eea-oasis/baseline/issues/34

Soundness – Field arithmetic (4/n)

Missing overflow check (of a public circuit input)

https://github.com/appliedzkp/semaphore/pull/96/

33

https://github.com/appliedzkp/semaphore/pull/96/

Soundness – R1CS

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

34

https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness – Trusted setup (paper)

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

35

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Soundness – Fiat-Shamir (code and papers)

Incomplete Fiat-Shamiring of protocol transcript

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-
affecting-girault-bulletproofs-and-plonk/

36

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Zero-knowledge – Application (Zcash, Monero)

Timing dependencies exploited to leak secrets and obtain oracles

https://eprint.iacr.org/2020/627.pdf

37

https://eprint.iacr.org/2020/627.pdf

Conclusions

😌Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

Safe code easier to write with DSLs (Cairo, Leo, Lurk, Noir, etc.)

Improvement in SDLC security (e.g. slsa.dev, GitHub Advanced Security)

Relatively narrow attack surface in practice

38

Conclusions

😌Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

Safe code easier to write with DSLs (Cairo, Leo, Lurk, Noir, etc.)

Improvement in SDLC security (e.g. slsa.dev, GitHub Advanced Security)

Relatively narrow attack surface in practice

😱Why be scared?

Few people understand zkSNARKs, even fewer can find bugs

Limited maturity level in many ZK/blockchain projects’ SDLC

Lack of tooling (testing, fuzzing, verification)

More ZK usage => more $$$ at stake => greater RoI for attackers

39

Conclusions

Learning resources and projects:

zkproof.org community and events

zkhack.dev virtual event (next on Nov 22)

zkvalidator.com initiative

zeroknowledge.fm podcast

zkStudyClub video series
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y

Bugs writeups such as https://blog.trailofbits.com/2022/04/13/part-1-coordinated-
disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

40

https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

http://zkproof.org
http://zkhack.dev/
http://zkvalidator.com
http://zeroknowledge.fm
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

ًاركش

Thank you

JP Aumasson
@veorq

Big thank yous for their help and feedback to:
Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink,
Daira Hopwood, Daniel Jacob Bilar, David Wong,
Lúcás Meier, Mathilde Raynal, Anna Rose

