e
T e - -

- - —— - - - - - -

-~ ~ — - - - - - -

.............

............

- - - - - - - - - - . - -
- - - - - - - - - - - .-
...........

I I I I I® S

MIDDLE EAST AND AFRICA

ZERO-KNOWLEDGE PROOFS:

15 - 17 NOVEMBER 2022
RIYADH FRONT EXHIBITION CENTRE
SAUDI ARABIA

JP Aumasson — CSO @ Taurus

STRATEGIC SPONSORS GOLD SPONSORS

o—oll) (39l 5L a5l
j-igyalig asopullg ilyspaall
SAUDI FEDERATION FOR CYBERSECURITY.
PROGRAMMING & DRONES

Infoblox s> Honeywell

ZSPIRE

/me

Co-founder & CSO of a Swiss fintech (Taurus)

e High-assurance crypto custody tech https://taurushg.com
e Used by banks to protect and manage their BTC/ETH/etc.
® Running a regulated exchange https://t-dx.com

Cryptography and vulnerability research since ~2006 ~ Jerious Crypto Dictionary
c[yptugraphy S0ty s r e

Curious Cryptographer
A Practical Introduction "

® Designed crypto in the Linux kernel, Bitcoin, etc.
(SipHash, BLAKE2, BLAKE3)
e Wrote books about cryptography

https://aumasson.|p. https:/twitter.com/veorq

f ¥ @ in #BHMEA22 | www.blackhat.com

https://taurushq.com
https://t-dx.com
https://aumasson.jp
https://twitter.com/veorq

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

© e 4
WHAT IS ZERO-KNOWLEDGE ENCRYPTION, AND
HOW DOES IT WORK?

&' w WRITTEN BY MATT AHLGREN RESEARCHED BY WSR TEAM JUNE 22, 2022 |IN CLOUD STORAGE, PASSWORD MANAGERS

Zero-knowledge encryption is arguably one of the most secure ways of
protecting your data. In a nutshell, it means that cloud storage or backup
providers know nothing (i.e. have “zero-knowledge") about the data you

store on their servers.

Zero Knowledge Architectures for Mobile
Applications

f ¥ @ in #BHMEA22 | www.blackhat.com

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

A class of cryptography protocols...
Between a prover and a verifier
Which can be non-interactive

Known since the 1980s, only recently
used in practice at scale (zkSNARKS)

The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)

Shafi Goldwasser Silvio Micali Charles Rackoff
MIT MIT University of Toronto

f ¥ © in #BHMEA22 | www.blackhat.com

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

,,,,,,

A ' ,... %

40 O (¥

NPt A
'.'

i
[
e\

f ¥ @ in #BHMEA22 | www.blackhat.com

Zero-knowledge proof?

NOT “zero-knowledge architecture” or“zero-trust”

NOT “zero-knowledge encryption” (marketing term for client-side encryption)

| - A
- o~

A class of cryptography protocols...
Between a prover and a veritier .

Which can be non-interactive

It' ' . e.
Known since the 1980s, only recently | R e
used in praCtice at Scale <ZkSNARK5) 5Ct:::::)ts;t:rﬁScienl:isl:ExplainsOneConceptinSLevelsoI’DiFFicultyIWIRED

4,707,354 views Jan 18, 2022 Co mp st Amit Sahai, PhD, is asked to explain the pt
of zero-kn wI edge proofs to 5 different pe pI child, a college student, a grad st ...mo

https [/ WWW. voutube Com/watch?v fOGdb1 CTubc

All

f ¥ @ in #BHMEA22 | www.blackhat.com

https://www.youtube.com/watch?v=fOGdb1CTu5c

The simplest ZK proof

Schnorr’s proof of knowledge of discrete logarithm (x in y = g mod p)

Prover Verifier
Pick a random r, send t = g" mod p

Send a random ¢

Send s =r+ cx mod p

Verify that g° =t x y©

It works because g° =gt =g’ x (g¥)° =t x y©

f ¥ @ in #BHMEA22 | www.blackhat.com

Zero-knowledge proofs applications

Privacy of payments, and of general computation (with “zkVMs”)
Scalability — via "ZK rollups”, to preventing re-computation of smart contracts

Storage proofs, as in Filecoin’s proofs of spacetime

Our proof-of-concept system allows the Police to prove to the public that the DNA profile of a
Presidential Candidate does not appear in the forensic DNA profile database maintained by the Police.
The proof, which 1s generated by the Police, relies on no external trusted party, and reveals no further
information about the contents of the database, nor about the candidate’s profile. In particular, no DNA
information 1s disclosed to any party outside the Police. The proof 1s shorter than the size of the DNA
database, and verified faster than the time needed to examine that database naively.

https://eprint.iacr.org/2018/046

f ¥ @ in #BHMEA22 | www.blackhat.com

https://eprint.iacr.org/2018/046

Vibrant ecosystem

Examples of major projects in the ZK space, many other initiatives and research groups

canoma 3

aleo.org anoma.network arkworks.rs aztec.network
Ucelo & STARKWARE @ansh

celo.org protocol.al starkware.co z.cash

f ¥ @ in #BHMEA22 | www.blackhat.com

This talk

Focus on zZkSNARKS, a class of zero-knowledge proof systems

Fully succinct = constant proof size and linear verification time (wrt program size)

Based on my experience looking for bugs in
Groth16, used in Zcash, Filecoin, and many others

Marlin, a universal zkSNARK, used in Aleo

Circuits, and in many other related crypto

f ¥ © in #BHMEA22 | www.blackhat.com

zkSNARKs and friends

zkSNARKSs are not the only proof systems used in practice
STARKS: no trusted setup, proof size not constant, post-quantum (StarkWare)

Bulletproofs: simpler, no trusted setup, but slower verification (Monero)

_____ | .
€ STARKWARE N <D Computational
Symmetric Cryptography | — — — — — < [ransparency @ Efficiency

Asymmetric Cryptography
Post-Quantum f Future & Short
Secure Proofing Proofs

Auror:
éSTARK Ligero

Hodor
LIbSTARK
ZKBoo

Marlin

genSTARK Succ. Aurora Sapling
Open ZKP SLONK ~ONK
Fractal Grothlé6 : o

s ®IO 7

STARK = Scalable, Transparent ARgument of Knowledge

f ¥ @ in #BHMEA22 | www.blackhat.com

zkSNARKSs’ golden age: 2018-2020

Zero-knowledge proof (ZKP) systems

ZKP System LR Protocol Transparent Universal ATOSIG) |08 Progmmmmg
year Quantum Secure Paradigm
Pinocchiol® {2013 zk-SNARK No No No Procedural
Geppettol*2 {2015 zk-SNARK No No No Procedural
TinyRAME? 12013 zk-SNARK No No No Procedural
Buffet*] 2015 zk-SNARK No No No Procedural
ZoKrates®! 2018 zk-SNARK No No No Procedural
xJsnark!=®] 2018 zk-SNARK No No No Procedural
VRAMI®] 2018 zk-SNARG No Yes No Assembly
vnTinyRAME8] |2014 zK-SNARK No Yes No Procedural
MIRAGEP] 2020 zk-SNARK No Yes No Arithmetic Circuits
Sonicl0l 2019 zk-SNARK No Yes No Arithmetic Circuits
Marlin! 2020 zk-SNARK No Yes No Arithmetic Circuits
PLONK2 2019 zk-SNARK No Yes No Arithmetic Circuits
SuperSonic* 2020 zk-SNARK Yes Yes No Arithmetic Circuits
Bulletproofs[*1/2018 Bulletproofs Yes Yes No Arithmetic Circuits
Hyrax[*°] 2018 zk-SNARK Yes Yes No Arithmetic Circuits
Halo!¢! 2019 zk-SNARK Yes Yes No Arithmetic Circuits
Virgol*] 2020 zk-SNARK Yes Yes Yes Arithmetic Circuits
Ligerol®] 2017 zk-SNARK Yes Yes Yes Arithmetic Circuits
Auroral#) 2019 zK-SNARK Yes Yes Yes Arithmetic Circuits
zk-STARKPOT 12019 zk-STARK Yes Yes Yes Assembly
Zilch=01 [>1] 2021 zk-STARK Yes Yes Yes Object-Oriented

https://www.wikiwand.com/en/Zero-knowledge proof

f ¥ @ in #BHMEA22 | www.blackhat.com

https://www.wikiwand.com/en/Zero-knowledge_proof

Why study zkSNARKSs security?

A critical component of decentralised platforms (L2 protocols, private transactions):
Complexity + Novelty => Non-trivial bugs

A lot at stake ($$9%, user data, user privacy)

f ¥ @ in #BHMEA22 | www.blackhat.com

Why study zkSNARKSs security?

As a cryptographer since ~2005, the most interesting crypto I've seen:
Intricate constructions with non-trivial components
“Simple but complex" — non-interactive, but many moving parts
“Multidimensional” way to reason about security

“Real-worldness”: not just papers — “code is specs”

f ¥ © in #BHMEA22 | www.blackhat.com

What's zkSNARKSs security?

Soundness: Invalid proofs should always be rejected

Most obvious attack, often the highest risk in practice:

Forging, altering, replaying valid proofs should be impossible

f ¥ © in #BHMEA22 | www.blackhat.com

What's zkSNARKSs security?

Zero-knowledge: Proofs should not leak secret information

In practice, succinct proofs of large programs can leak only little data

f ¥ © in #BHMEA22 | www.blackhat.com

What's zkSNARKSs security?

Completeness: Valid proofs should always be accepted

Often a DoS/usability risk that may be further exploited

All programs/circuits supported should be correctly processed

f ¥ © in #BHMEA22 | www.blackhat.com

Who can find bugs?

Developers of the code (manually or via testing)

Developers of other projects’ code

A.

B.

C. External auditors of the code

D. Users of the code, accidentally &
E.

External “attackers” &

Security goal: you want A|B|C to find bugs before D|E

f ¥ © in #BHMEA22 | www.blackhat.com

Bug hunting challenges

Practical zkSNARKSs are recent, thus auditors often have
Limited experience auditing zZkSNARKSs
Limited knowledge of the theory and of implementations’ tricks
Limited “checklist" of bugs and bug classes
Limited tooling and methodologies

Limited documentation from the projects

How to make useful work nonetheless?

f ¥ © in #BHMEA22 | www.blackhat.com

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)
More threat analysis, to understand the application’s unique/novel risks
Practical experience: writing PoCs, circuits, proof systems, etc.
Learn previous failures, for example from...

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

f ¥ © in #BHMEA22 | www.blackhat.com

General workflow, and failure examples

Computation

Circuit definition
Arithmetization

Non-interactive proof

Usage in applications

f ¥ @ in #BHMEA22 | www.blackhat.com

General workflow, and failure examples

Computation The program’s logic is not secure

Circuit definition The circuit is not equivalent to the program

Arithmetization The constraint system fails to enforce a constraint
Non-interactive proof Insecure choice of primitives/parameters/properties

Usage in applications The application allows replays of previous proofs

f ¥ @ in #BHMEA22 | www.blackhat.com

Need structure/methodology..

A failure in a lower layer can jeopardise the security of all upper layers

@ Adversarial input @ || @ Protocol input & & Config &

\ /

Application

Prover/verifier

Arithmetization / constraints generation
from fixed or user-defined circuit

Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies
f © ¥y @ in #BHMEA22 | www.blackhat.com

What to look for, and where?

A failure in a lower layer can jeopardise the security of all upper layers

@ Adversarial input @ || @ Protocol input & & Config &

\ /

Zero-knowledge greater risks

Application

Completeness anc Prover/verifier
Soundness greater risks

Arithmetization / constraints generation
from fixed or user-defined circuit

Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies
f © ¥y @ in #BHMEA22 | www.blackhat.com

Divide and conquer..

A failure in a subcomponent can jeopardise the security of all upper layers

@ Adversarial input U

€ Protocol input €

& Config &

\

Key/nonce management, Testing

Hashing, PRF, Algebraic commitment,
Randomness, Merkle trees, ...

Arithmetization / constraints generation
from fixed or user-defined circuit

Application

Prover/verifier

=

Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies
f © ¥y @ in #BHMEA22 | www.blackhat.com

Interface, Side channels, Replays

-lat-Shamir, Polynomial commitments,
—lash-to-curve, linear algebra, ...

RICS, AIR, polynomials, ...

Fast operations, multiexp, ..

RNG,

Understand composability conditions..

Security 101: Input validation must be defined, implemented, and tested

@ Adversarial input Y || @ Protocol input & & Config &

Key management, Testing Application Interface, Side channels

Contracts between components must be defined| Example: which component is responsible
to prevent insecure composition for group membership checks?

Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment
Randomness, Merkle trees Prover/verifier Linear algebra, Multi-exp.

Polynomial commitments, Fiat-Shamir transforms, etc. etc.

f ¥ @ in #BHMEA22 | www.blackhat.com

Real-word crypto bugs..

I

NF #l'rc NATIONAL
L GEOCRAPHIC
Collect them " You dare!

— ,..\n.%; -,

m“

-_—— .

Weeaty

COVER THEIR

WAZING
SECRET LIVESS

- .

L

f ¥ @ in #BHMEA22 | www.blackhat.com

Soundness — Field arithmetic (1/n)

Vulnerability allowing double spend #16
poma opened this issue on 26 Jul 2019 - 2 comments

poma commented on 26 Jul 2019 - edited ~ @

Looks like in Semaphore.sol#L83 we don't check that nullifier length is less than field

modulus. So nullifier_hash +
21888242871839275222246405745257275088548364400416034343698204186575808495617

will also pass snark proof verification if it fits into uint256, allowing double spend.

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

f ¥ @ in #BHMEA22 | www.blackhat.com

https://github.com/appliedzkp/semaphore/issues/16

Soundness — Field arithmetic (2/n)

fix: don't allow double-spending with a large nullifier #2

)nd V-l sragss merged 1 commit into al6z:main from kobigurk:fix/nullifier-exploit (0 on 26 Jan

L) Conversation 1 -0- Commits 1 [Fl Checks 0 Files changed 2

@ kobigurk commented on 26 Jan Contributor | (&) ***

Currently the nullifier is not checked to be within the SNARK field. This allows creating a nullifier which is still a valid
bytes32/uint256 that has the same result modulo the field, but the spent nullifier dictionary treats them as different, allowing
double-spending.

@ 2 A

-O- e fix: don't allow double-spending with a large nullifier f615802

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/al6z/zkp-merkle-airdrop-contracts/pull/2

f ¥ @ in #BHMEA22 | www.blackhat.com

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

Soundness — Field arithmetic (3/n)

Potential security bug with the zk-SNARK verifier

QI weijiekoh opened this issue on 21 Mar 2020 - 2 comments - Fixed by #43

weijiekoh commented on 21 Mar 2020 © -

Expected Behavior

The Verifier.verify() function, not the function that calls it (i.e.
Shield.createMSA() and Shield.createP0() , should require that each public input to

the snark is less than the scalar field:

Missing overflow check (of a public circuit input)

https://github.com/eea-oasis/baseline/issues/34

f ¥ @ in #BHMEA22 | www.blackhat.com

https://github.com/eea-oasis/baseline/issues/34

Soundness — Field arithmetic (4/n)

210 - // If the values are not in the correct range, the pairing check will fail.
211 + // If the values are not in the correct range, the pairing check will fail
21729 // because by EIP197 it verfies all input.

211 213 Proof memory proof;

212 214 proof.A = Pairing.G1lPoint(a[@], al1l);

213 215 proof.B = Pairing.G2Point([b[@][0], b[0][1]1], [b[1]l[@], b[1]1[11]);

B @@ -219,7 +221,7 @@ contract Verifier {

219 221 if (input.length + 1 != vk.IC.length) revert Pairing.InvalidProof();

220 222 Pairing.G1Point memory vk_x = vk.IC[O];

221 223 for (uint256 i = @; i < input.length; i++) {

222 - if (input[i] >= Pairing.SCALAR_MODULUS) revert Pairing.InvalidProof();
2210 + // By EIP196 the scalar_mul verifies it's input is in the correct range.

223 225 vk_x = Pairing.addition(vk_x, Pairing.scalar_mul(vk.IC[i + 1], input[i]));

Missing overflow check (of a public circuit input)

https://github.com/appliedzkp/semaphore/pull/96/

f ¥ @ in #BHMEA22 | www.blackhat.com

https://github.com/appliedzkp/semaphore/pull/96/

Soundness — R1CS

Discuss: enforce mul_by inverse #/0

Il Ce[-sB weikengchen merged 7 commits into master from fix-mul-by-inverse @ on 6 Jul

L) Conversation 12 -0- Commits 7 [} Checks 5 Files changed 3

@ weikengchen commented on 4 Jul 2021 - edited ~ Member (&) ---

Description

It seems that the mul_by_inverse implementation has a soundness issue that the
newly allocated d_inv does not need to be the inverse of d but could be any value.
This can be a soundness issue as the poly gadgets have used this API.

fn mul_by_inverse(&self, d: &Self) —> Result<Self, SynthesisError> {
let d_inv = if self.is_constant() || d.is_constant() {
d.inverse()?
if self.is_constant() || d.is_constant() {
let d_inv = d.inverse()?;
Ok(d_inv x self)
} else {

RUSTSEC-2021-0075
Flaw in

unsound R1CS constraint systems

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

f ¥ @ in #BHMEA22 | www.blackhat.com

https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness — Trusted setup (paper)

Background

On March 1, 2018, Ariel Gabizon, a cryptographer employed by the Zcash Company at the time, discovered
a subtle cryptographic flaw in the [BCTV14] paper that describes the zk-SNARK construction used in the
original launch of Zcash. The flaw allows an attacker to create counterfeit shielded value in any system that
depends on parameters which are generated as described by the paper.

This vulnerability is so subtle that it evaded years of analysis by expert cryptographers focused on zero-
knowledge proving systems and zk-SNARKSs. In an analysis [Parno15] in 2015, Bryan Parno from Microsoft
Research discovered a different mistake in the paper. However, the vulnerability we discovered appears to
have evaded his analysis. The vulnerability also appears in the subversion zero-knowledge SNARK scheme
of [Fuchsbauer17], where an adaptation of [BCTV14] inherits the flaw. The vulnerability also appears in the
ADSNARK construction described in [BBFR14]. Finally, the vulnerability evaded the Zcash Company’s own
cryptography team, which includes experts in the field that had identified several flaws in other parts of the
system.

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successtully-remediated/

f ¥ @ in #BHMEA22 | www.blackhat.com

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Soundness — Fiat-Shamir (code and papers)

Coordinated disclosure of
HH Y : The Problem
vulnerabilities affecting
i Why is this type of vulnerability so widespread? It really comes down to a
G Irau It' B U I IEt p rOOfs' an d combination of ambiguous descriptions in academic papers and a general
P I on K lack of guidance around these protocols.
LEAVE A COMMENT

o 7enGo’s zk-paillier

By Jim Miller « ING Bank’s zkrp (deleted)
e SECBIT Labs’ ckb-zkp The vulnerabilities in one of these proof systems, Bulletproofs, stem from a
e Adjoint, Inc.’s bulletproofs mistake in the original academic paper, in which the authors recommend

e Dusk Network’s plonk
e Iden3’s SnarkJS
e ConsenSys’ gnark

an insecure Fiat-Shamir generation. In addition to disclosing these issues
to the above repositories, we’ve also reached out to the authors of
Bulletproofs who have now fixed the mistake.

Incomplete Fiat-Shamiring of protocol transcript

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-
affecting-girault-bulletproofs-and-plonk/

f ¥ @ in #BHMEA22 | www.blackhat.com

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Zero-knowledge — Application (Zcash, Monero)

We exploit the fact that the time to produce a proof is correlated with the value of the prover’s
witness. As the witness contains the transaction amount, we expect this amount to be correlated
with the proof time. For example, Zcash’s proofs decompose the transaction amount into bits and

Remote Side-Channel Attacks on Anonymous Transactions

Florian Tramer* Dan Boneh Kenneth G. Paterson compute an elliptic curve operation for each non-zero bit. The proof time is thus strongly correlated
Stanford University Stanford University ETH Zurich with the Hamming weight of the transaction amount, which is in turn correlated with its value.
tramer@cs.stanford.edu dabo@cs.stanford.edu kenny.paterson@inf.ethz.ch

Abstract: Privacy-focused crypto-currencies, such as Zcash or Monero, aim to provide
strong cryptographic guarantees for transaction confidentiality and unlinkability. In this
paper, we describe side-channel attacks that let remote adversaries bypass these
protections. We present a general class of timing side-channel and traffic-analysis
attacks on receiver privacy. These attacks enable an active remote adversary to identify
the (secret) payee of any transaction in Zcash or Monero. The attacks violate the
privacy goals of these crypto- currencies by exploiting side-channel information leaked
by the implementation of different system components. Specifically, we show that a

Timing dependencies exploited to leak secrets and obtain oracles

https://eprint.iacr.org/2020/627.pdf

f ¥ @ in #BHMEA22 | www.blackhat.com

https://eprint.iacr.org/2020/627.pdf

Conclusions

< Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)
Safe code easier to write with DSLs (Cairo, Leo, Lurk, Noir, etc.)
Improvement in SDLC security (e.g. slsa.dev, GitHub Advanced Security)

Relatively narrow attack surface in practice

f ¥ © in #BHMEA22 | www.blackhat.com

Conclusions

< Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)
Safe code easier to write with DSLs (Cairo, Leo, Lurk, Noir, etc.)
Improvement in SDLC security (e.g. slsa.dev, GitHub Advanced Security)

Relatively narrow attack surface in practice

62 Why be scared?

Few people understand zkSNARKs, even fewer can find bugs
Limited maturity level in many ZK/blockchain projects” SDLC
Lack of tooling (testing, fuzzing, verification)

. More ZK usage => more $$$ at stake => greater Rol for attackers

f ¥ © in #BHMEA22 | www.blackhat.com

Conclusions

Learning resources and projects:

zkproof.org community and events

zkhack.dev virtual event (next on Nov 22)

zk-SNARKS: A Gentle Introduction
zkvalidator.com initiative

Anca Nitulescu

Zeroknowledge.fm pOdcaSt https://www.di.ens.fr/~nitulesc/files/Survey-SNARKSs.pdf

zkStudyClub video series
http://youtu.be/playlist?list=PL j80z0cm8QHm_9BdZ1BqcGbgE-BEn-3Y

Bugs writeups such as https://blog.trailofbits.com/2022/04/13/part-1-coordinated-
disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

f ¥ @ in #BHMEA22 | www.blackhat.com

http://zkproof.org
http://zkhack.dev/
http://zkvalidator.com
http://zeroknowledge.fm
http://youtu.be/playlist?list=PLj80z0cJm8QHm_9BdZ1BqcGbgE-BEn-3Y
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

e

Thank you

.

JP Aumasson
@veorq

Big thank yous for their help and feedback to:

Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink,
Daira Hopwood, Daniel Jacob Bilar, David Wong,

L dcas Meier, Mathilde Raynal, Anna Rose

