
Security of ZKP projects: same but different

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

Should you pay for security audits?

JP Aumasson
@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

This talk

My 2 cents on how to optimize the RoI of “security audits” of zkSNARKs

~10 years doing crypto audits, and more recently projects involving

Groth16, the foundation of real-world zkSNARKs

Marlin, a (universal) zkSNARK slightly less simple

(Most of the content applies to other systems: Plonk, SONIC, etc., and STARKs.)

3

Why study zkSNARKs security?

A major risk for decentralised platforms:

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

4

Why study zkSNARKs security?

A major risk for decentralised platforms

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$, user data, user privacy)

As a cryptographer since ~2005, the most interesting crypto I’ve seen:

Intricate constructions with non-trivial components

“Simple but complex" – non-interactive, but many moving parts

“Multidimensional" way to reason about security

“Real-worldness”: not just papers – “code is specs”
5

What's zkSNARKs security? (it depends™)

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected – most obvious attack vector

Forging, altering, replaying valid proofs should be impossible

6

What's zkSNARKs security? (it depends™)

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected – most obvious attack vector

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information (witness)

In practice succinct proofs of large programs can leak only little data

7

What's zkSNARKs security? (it depends™)

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected – most obvious attack vector

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak secret information (witness)

In practice succinct proofs of large programs can leak only little data

Completeness, often a DoS/usability risk that may be further exploited:

Valid proofs should always be accepted

All programs/circuits supported should be correctly processed

8

Who can find bugs?

A. Developers of the code (manually or via testing)

B. Developers of other projects’ code

C. External auditors of the code

D. Users of the code, accidentally 😇

E. External “attackers” 😈

Security goal: you want A|B|C to find bugs before D|E

9

Bug hunting challenges

Practical zkSNARKs are recent, thus auditors often have

Limited experience auditing zkSNARKs

Limited knowledge of the theory and of implementations’ tricks

Limited “checklist" of bugs and bug classes

Limited tooling and methodologies

Limited documentation from the projects

How to make useful work nonetheless?

10

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)

More threat analysis, to understand the application’s unique/novel risks

Practical experience: writing PoCs, circuits, proof systems, etc.

Learn previous failures, for example from…

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

11

General workflow, and failure examples

12

Computation

Circuit definition

Arithmetization

Non-interactive proof

Integration

General workflow, and failure examples

13

Computation

Circuit definition

Arithmetization

Non-interactive proof

Integration

The program’s logic is not secure

The circuit is not equivalent to the program

The constraint system fails to enforce a constraint

Insecure choice of primitives/parameters/properties

The application allows replays of previous proofs

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

14

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

Break zero-knowledge, for example by exploiting

Private data treated as public variables

Application-level “metadata attacks”

15

How to break zkSNARKs? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of private values

Break zero-knowledge, for example by exploiting

Private data treated as public variables

Application-level “metadata attacks”

Break completeness, for example by exploiting

Incorrect constraint synthesis behavior on edge cases (e.g. number of private vars)

Gadget composition failure caused by type mismatch between gadget i/o values
16

How to break zkSNARKs? (2/2)

Break (off-chain) software, via any bug leading to

Leakage of data, including via side channels (timing, oracles, etc.)

Any form in insecure state (code execution, DoS)

Compromise the supply-chain, via

Trusted setup's code and execution

Build and release process integrity

Software dependencies

17

How to break zkSNARKs? (2/2)

Break (off-chain) software, via any bug leading to

Leakage of data, including via side channels (timing, oracles, etc.)

Any form in insecure state (code execution, DoS)

Compromise the supply-chain, via

Trusted setup's code and execution

Build and release process integrity

Software dependencies

Break (on-chain) software (incl. verifier) via smart contract bugs, logic flaws, etc.

18

Need structure/methodology..

19

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation
from fixed or user-defined circuit

What to look for, and where?

20

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Zero-knowledge greater risks

Completeness and
Soundness greater risks

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation
from fixed or user-defined circuit

Divide and conquer..

21

Field arithmetic, elliptic curves group operations

A failure in a subcomponent can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Arithmetization / constraints generation
from fixed or user-defined circuit

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Hashing, PRF, Algebraic commitment,
Randomness, Merkle trees, …

Fiat-Shamir, Polynomial commitments,
Hash-to-curve, linear algebra, …

Key/nonce management, Testing Interface, Side channels, Replays

Fast operations, multiexp, …

R1CS, AIR, polynomials, …

RNG, …

..

Understand composability conditions..

22

Security 101: Input validation must be defined, implemented, and tested

Prover/verifier
Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment

Randomness, Merkle trees Linear algebra, Multi-exp.
Polynomial commitments, Fiat-Shamir transforms, etc. etc.

Application Key management, Testing Interface, Side channels

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Contracts between components must be defined
to prevent insecure composition

Example: which component is responsible
for group membership checks?

23

Real-word crypto bugs..

Soundness – Field arithmetic (1/n)

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

24

https://github.com/appliedzkp/semaphore/issues/16
https://github.com/appliedzkp/semaphore/issues/16

Soundness – Field arithmetic (2/n)

Root cause: Missing overflow check of a nullifier (~ unique ID of a shielded payment)

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

25

https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2
https://github.com/a16z/zkp-merkle-airdrop-contracts/pull/2

Soundness – Field arithmetic (3/n)

Missing overflow check (of a public circuit input)

https://github.com/eea-oasis/baseline/issues/34

26

https://github.com/eea-oasis/baseline/issues/34
https://github.com/eea-oasis/baseline/issues/34

Soundness – Field arithmetic (4/n)

Missing overflow check (of a public circuit input)

https://github.com/appliedzkp/semaphore/pull/96/

27

https://github.com/appliedzkp/semaphore/pull/96/
https://github.com/appliedzkp/semaphore/pull/96/

Soundness – R1CS

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

28

https://github.com/arkworks-rs/r1cs-std/pull/70
https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness – Hash validation

Coding error, allowing to fake the witness’ Merkle root and forge proofs

https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

29

https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

Soundness – Trusted setup (paper)

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

30

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Soundness – Fiat-Shamir (code and papers)

Incomplete Fiat-Shamiring of protocol transcript

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-
affecting-girault-bulletproofs-and-plonk/

31

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Zero-knowledge – Application (Aztec)

Missing “account nonce” in encrypted notes processing, breaking privacy

https://medium.com/@jaosef/54dff729a24f (Aztec 2.0 Pre-Launch Notes)

32

https://medium.com/@jaosef/54dff729a24f
https://medium.com/@jaosef/54dff729a24f

Zero-knowledge – Application (Zcash, Monero)

Timing dependencies exploited to leak secrets and obtain oracles

https://eprint.iacr.org/2020/627.pdf

33

https://eprint.iacr.org/2020/627.pdf
https://eprint.iacr.org/2020/627.pdf

Zero-knowledge – Prover (Plonkup)

Missing (randomized) blinding to hide private inputs – potential ZK loss

https://github.com/dusk-network/plonk/pull/651

34

https://github.com/dusk-network/plonk/pull/651
https://github.com/dusk-network/plonk/pull/651

Completeness? – DSL / Signatures

Valid signatures rejected, risk initially deemed negligible

https://github.com/starkware-libs/cairo-lang/issues/39

35

https://github.com/starkware-libs/cairo-lang/issues/39
https://github.com/starkware-libs/cairo-lang/issues/39

Conclusions

😌 Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

Safe code easier to write with DSLs (Cairo, Leo, etc.) and reusable gadgets/chips

Relatively narrow attack surface in practice

36

Conclusions

😌 Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

Safe code easier to write with DSLs (Cairo, Leo, etc.) and reusable gadgets/chips

Relatively narrow attack surface in practice

😱 Why be scared?

Few people understand zkSNARKs, even fewer can find bugs

Lack of tooling (wrt testing, fuzzing, verification)

More ZKPs used => more $$$ at stake => greater RoI for vuln researchers

37

Conclusions

We need more…

Testing and (smart) fuzzing, formal verification can probably help too

Real-world specifications (ex: https://eng-blog.o1labs.org/posts/cargo-spec/)

Information sharing, with detailed and accessible write-ups, such as
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-
vulnerabilities-affecting-girault-bulletproofs-and-plonk/

38

https://eng-blog.o1labs.org/posts/cargo-spec/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://eng-blog.o1labs.org/posts/cargo-spec/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://johnwickerson.github.io/papers/verismith_fpga20.pdf
https://johnwickerson.github.io/papers/verismith_fpga20.pdf

Conclusions

Learn from hardware circuit synthesizers?

HDL-to-netlist ≈ Program-to-constraints – same, but different

History of bugs and tooling

Testing methodologies

39

https://johnwickerson.github.io/papers/verismith_fpga20.pdf

https://johnwickerson.github.io/papers/verismith_fpga20.pdf
https://johnwickerson.github.io/papers/verismith_fpga20.pdf

Thank you!

JP Aumasson
@veorq

CSO @ taurushq.com

Big thank yous for their help and feedback to:
Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink,
Daira Hopwood, Daniel Jacob Bilar, David Wong,
Lúcás Meier, Mathilde Raynal

http://taurushq.com
http://taurushq.com

