Zero-knowledge proofs security, in practice

JP Aumasson

I @veorq
CSO @ taurushg.com

http://taurushq.com
http://taurushq.com

NIZK arguments security, in practice

JP Aumasson

I @veorq
CSO @ taurushg.com

http://taurushq.com
http://taurushq.com

This talk

Focus on zkSNARKSs, a class of NIZK arguments

Fully succinct = O(1) proof size and O(circuit size) verification time

Based on my experience looking for bugs in systems using
Groth16, used in Zcash, Filecoin, and many others

Marlin, a universal zkSNARK, used in Aleo

Most of the content applies to other systems (Plonk, SONIC, etc.) and STARKSs

Why study zkSNARKSs security?

For blockchain projects: A major risk:
Complexity + Novelty => Non-trivial bugs

A lot at stake ($$% and user data/privacy)

Why study zkSNARKSs security?

As a cryptographer: The most interesting crypto today:
Solving real-world problems and deployed at scale (good papers + good code!)
Intricate constructions with non-trivial components
“Simple but complex" (non-interactive, many moving parts)

“Multidimensional" way to reason about security

What is zkSNARKSs security?

Soundness, often the highest risk in practice:
Invalid proofs should always be rejected

Forging, altering, replaying valid proofs should be impossible

What is zkSNARKSs security?

Zero-knowledge: Proofs should not leak witness information (private variables)

In practice succinct proofs of large programs can leak only little data

What is zkSNARKSs security?

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected

Forging, altering, replaying valid proofs should be impossible
Zero-knowledge: Proofs should not leak witness information (private variables)

In practice succinct proofs of large programs can leak only little data
Completeness, often a DoS/usability risk that may be further exploited:

Valid proofs should always be accepted

All programs/circuits supported should be correctly processed

Bug hunting challenges

Practical zZkSNARKSs are recent, thus auditors often have
Limited experience auditing ZKPs
Limited knowledge of the theory, of implementations’ tricks
Limited “checklist" of bugs and bug classes

Limited tooling and methodology

Most bugs found internally or by teams of similar projects

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)
More threat analysis, to understand the application’s unique/novel risks
Practical experience: writing PoCs, circuits, proof systems, etc.
Learn previous failures, for example from...

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

10

General workflow, and failure examples

Computation
Circuit definition

Arithmetization

Non-interactive proof

Integration

11

General workflow, and failure examples

Computation The program’s logic is not secure

Circuit definition The circuit is not equivalent to the program

Arithmetization The CS fails to enforce an operation a constraint

Bad choice of internal commitment schemes wrt
hiding or binding properties

The application allows replays of previous proofs

Non-interactive proof

12

How to break zkSNARKSs security? (1/2)

Break soundness, for example by exploiting
Constraint system not effectively enforcing certain constraints

Insecure generation or protection of proving keys

13

How to break zkSNARKSs security? (1/2)

Break soundness, for example by exploiting
Constraint system not effectively enforcing certain constraints
Insecure generation or protection of proving keys

Break zero-knowledge, for example by exploiting
Private data treated as public variables

Protocol-level “metadata attacks”

14

How to break zkSNARKSs security? (1/2)

Break soundness, for example by exploiting
Constraint system not effectively enforcing certain constraints
Insecure generation or protection of proving keys
Break zero-knowledge, for example by exploiting
Private data treated as public variables
Protocol-level “metadata attacks”
Break completeness, for example by exploiting
Incorrect R1CS synthesis behaviour on edge cases (e.g. wrt number of private vars)

Gadget composition failure caused by type mismatch between gadget i/o values

15

How to break zkSNARKSs security? (2/2)

Break (off-chain) software, via any bug leading to
Leakage of data, including via side channels, encodings (“ZK execution”)
Any form in insecure state (code execution, DoS)
Compromise the supply-chain, via
Trusted setup's code and execution
Build and release process integrity

Software dependencies

16

How to break zkSNARKSs security? (2/2)

Break (off-chain) software, via any bug leading to
Leakage of data, including via side channels, encodings (“ZK execution”)
Any form in insecure state (code execution, DoS)
Compromise the supply-chain, via
Trusted setup's code and execution
Build and release process integrity
Software dependencies

Break (on-chain) software (incl. verifier) via smart contract bugs, logic flaws, etc.

17

Multiple layers

A failure in a lower layer can jeopardise the security of all upper layers

© Adversarial input & & Protocol input & = Config &

\

Application

Prover/verifier

Arithmetization / constraints generation
from fixed or user-defined circuit

Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies

Multiple layers

A failure in a lower layer can jeopardise the security of all upper layers

© Adversarial input & & Protocol input & = Config &

\

Zero-knowledge greater risks —— Application

Completeness anc Prover/verifier
Soundness greater risks .

Arithmetization / constraints generation
from fixed or user-defined circuit

> Field arithmetic, elliptic curves group operations

Platform: language, runtime, OS, hardware, dependencies

19

Multiple layers

A failure in a subcomponent can jeopardise the security of all upper layers

© Adversarial input & & Protocol input & = Config &

\ -

Key/nonce management, lesting Application Interface, Side channels, Replays

—ashing, PRF, Algebraic commitment,

, -lat-Shamir, Polynomial commitments,
Randomness, Merkle trees, ... Prover/verifier

—lash-to-curve, linear algebra, ...

Arithmetization / constraints generation

RICS,AIR, pol als, ...
from fixed or user-defined circuit POYTIOIT NG
Field arithmetic, elliptic curves group operations Fast operations, multi-exp, ..

Platform: language, runtime, OS, hardware, dependencies RNG, ...

20

Multiple layers

Security 101: Input validation must be defined, implemented, and tested

© Adversarial input U & Protocol input & & Config &

Key management, lesting Application Interface, Side channels

Example: which component is responsible
for group membership checks?

Contracts between components must be defined
to prevent insecure composition

Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment

Randomness, Merkle trees Prover/verifier Linear algebra, Multi-exp.
Polynomial commitments, Fiat-Shamir transforms, etc. etc.

21

[,\\I]-m-u ﬁ! |f' - l‘ | NATIONAL

GEOGCRAPHIC

Colled them " you dnre'
U "““’,‘L \

COVER THEIR

ALING,

SECRET LIVESS

R

22

Soundness — Field arithmetic

Vulnerability allowing double spend #16

@) B poma opened this issue on 26 Jul 2019 - 2 comments

e poma commented on 26 Jul 2019 - edited ~ @

Looks like in Semaphore.sol#L83 we don't check that nullifier length is less than field

modulus. So nullifier_hash +
21888242871839275222246405745257275088548364400416034343698204186575808495617

will also pass snark proof verification if it fits into uint256, allowing double spend.

Root cause: Missing overflow check (of a nullifier ~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

23

https://github.com/appliedzkp/semaphore/issues/16
https://github.com/appliedzkp/semaphore/issues/16

Soundness — Field arithmetic

Potential security bug with the zk-SNARK verifier

O)e LB weijiekoh opened this issue on 21 Mar 2020 - 2 comments - Fixed by #43

weijiekoh commented on 21 Mar 2020 © -

Expected Behavior

The Verifier.verify() function, not the function that calls it (i.e.
Shield.createMSA() and Shield.createP0() , should require that each public input to
the snark is less than the scalar field:

Missing overflow check (of a public input)

https://github.com/eea-oasis/baseline/issues/34

24

https://github.com/eea-oasis/baseline/issues/34
https://github.com/eea-oasis/baseline/issues/34

Soundness — Field arithmetic

210

211
212
213

219
220
221
222

223

211
212+
213
214
215

-+

221

22263
223

224 +
225

// If the values are not in the correct range, the pairing check will fail.
// If the values are not in the correct range, the pairing check will fail
// because by EIP197 it verfies all input.

Proof memory proof;

proof.A = Pairing.G1Point(al[@], all]);

proof.B = Pairing.G2Point([b[0@][@], b[@]([1]1], [b[1l[@], bl[1]1[11]);

@@ -219,7 +221,7 @@ contract Verifier {

if (input.length + 1 != vk.IC.length) revert Pairing.InvalidProof();
Pairing.G1Point memory vk_x = vk.IC[0];
for (uint256 i = 0; i < input.length; i++) {
if (input[i] >= Pairing.SCALAR_MODULUS) revert Pairing.InvalidProof();
// By EIP196 the scalar_mul verifies it's input is in the correct range.

vk_Xx = Pairing.addition(vk_x, Pairing.scalar_mul(vk.IC[i + 1], input[i]));

Missing overflow check (of a public input)

https://github.com/appliedzkp/semaphore/pull/96/

25

https://github.com/appliedzkp/semaphore/pull/96/
https://github.com/appliedzkp/semaphore/pull/96/

Soundness — R1CS

Discuss: enforce mul_by inverse #/0

Il Ce sl weikengchen merged 7 commits into master from fix-mul-by-inverse (83 on 6 Jul

L) Conversation 12 -0- Commits 7) Checks 5 Files changed 3

weikengchen commented on 4 Jul 2021 - edited ~ Member (&) «-°

Description

It seems that the mul_by_inverse implementation has a soundness issue that the
newly allocated d_inv does not need to be the inverse of d but could be any value.
This can be a soundness issue as the poly gadgets have used this API.

fn mul_by_inverse(&self, d: &Self) —> Result<Self, SynthesisError> {
let d_inv = if self.is_constant() || d.is_constant() {
d.inverse()?
if self.is_constant() || d.is_constant() {
let d_inv = d.inverse()?;
Ok(d_inv x self)
} else {

RUSTSEC-2021-0075
Flaw in

unsound R1CS constraint systems

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

26

https://github.com/arkworks-rs/r1cs-std/pull/70
https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness — Hash validation

Technical Details

The bug was found by Kobi Gurkan in the zk-SNARK implementation of the
MIMC hash function in circomlib, that is used in Tornado for building the merkle
tree of deposits. If everything works as expected, users prove that they have
committed a leaf to that tree during deposit without revealing the commitment
itself. The buggy version did not check that resulting MIMC hash is correct. The
fix is simple: instead of using the " =" operator the ' <==" operator should be

used.

Coding error, allowing to fake the witness” Merkel root and forge proofs

https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

Soundness — Paper / Setup

Background

On March 1, 2018, Ariel Gabizon, a cryptographer employed by the Zcash Company at the time, discovered
a subtle cryptographic flaw in the [BCTV14] paper that describes the zk-SNARK construction used in the
original launch of Zcash. The flaw allows an attacker to create counterfeit shielded value in any system that
depends on parameters which are generated as described by the paper.

This vulnerability is so subtle that it evaded years of analysis by expert cryptographers focused on zero-
knowledge proving systems and zk-SNARKS. In an analysis [Parno15] in 2015, Bryan Parno from Microsoft
Research discovered a different mistake in the paper. However, the vulnerability we discovered appears to
have evaded his analysis. The vulnerability also appears in the subversion zero-knowledge SNARK scheme
of [Fuchsbauer17], where an adaptation of [BCTV14] inherits the flaw. The vulnerability also appears in the
ADSNARK construction described in [BBFR14]. Finally, the vulnerability evaded the Zcash Company’s own
cryptography team, which includes experts in the field that had identified several flaws in other parts of the
system.

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

23

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Zero-knowledge — Application (Aztec)

Issue #2

We discovered our method for removing spending keys involving an account
nullifier, broke the sender privacy of transactions from the account; and
consequently changed our key removal procedure to use an “Account Nonce”

instead of the nullifier.

Issue #3

Our privacy circuit was not correctly including the user account nonce within the
encrypted note cipher-text. This would have mean that a deprecated account,
with an old nonce, would be able to spend any note owned by the account. We

modified our circuit to include the account nonce when encrypting notes.

Nonces not correctly set by the application, breaking privacy

https://medium.com/@jaoset/54dft729a24f (Aztec 2.0 Pre-Launch Notes)

29

https://medium.com/@jaosef/54dff729a24f
https://medium.com/@jaosef/54dff729a24f

Zero-knowledge — Application (Zcash)

4.2 ITM Attack: Defeating zk-SNARKSs

We can think of this attack as a "defeat” of zero-knowledge mathematics only in practice, not in theory. Many
qualifications are needed. We in no way "broke” the mathematics of zk-SNARKs, we are taking advantage of how
zk-SNARKsare being used in higher level protocols, i.e. the Zcash Transaction Format Protocol and it's associated
consensus rules.

So zk-SNARKsare sound and we have not actually leaked knowledge directly from a zero-knowledge proof, that
is mathematically impossible. We have leaked knowledge from how these proofs are used in the larger system
called Zcash Protocol, itself an extension of Bitcoin Protocol which notoriously leaks metadata.

Correlations between (shielded) transactions Attacking Zcash Protocol For Fun And Profit
leaking exploitable information Whitepaper Version 0.5
https://eprint.iacr.org/2020/627.pdf Duke Leto + The Hush Developers!

30

https://eprint.iacr.org/2020/627.pdf
https://eprint.iacr.org/2020/627.pdf

Zero-knowledge — Prover (Plonkup)

H dusk-network / plonk ' Public

<> Code () Issues 26 {9 Pull requests 3 CJ) Discussions () Actions] Projects 1

Add blinding scalars #6571

xRSl Xevisalle merged 6 commits into master from blinding (5 6 days ago

C)) Conversation 29 -0- Commits 6 [F) Checks 5 Files changed 12

=8F moCello commented on 14 Dec 2021

Add blinding scalars in round 1, 2 and 3 of the proof

2 = moCello assigned xevisalle on 14 Dec 2021

Missing (randomized) blinding to hide private inputs — potential ZK loss

https://github.com/dusk-network/plonk/pull/651

https://github.com/dusk-network/plonk/pull/651
https://github.com/dusk-network/plonk/pull/651

DoS — Merkle tree

Bug: Merkle root position check

The rollup contains a “root” tree; a Merkle tree containing the past Merkle roots
of the note tree (which contains all join-split “value” notes and user “account”

notes).

As part of the root rollup circuit, the rollup provider must compute the new root
of the note tree and insert it into the root tree. The intended position of the new
leaf in the tree is directly adjacent to the rightmost non-zero leaf; i.e. the tree is

initialized to all zero leaves, and then updated from left-to-right.

The bug was that our circuit did not actually constrain the position of the new
leaf. In reality, the rollup provider could have inserted the new leaf at *any*
position in the root tree. An adversary would have been able to insert a leaf at an
arbitrary location in the root tree and not reveal the location (this location is not a

public input).

If after such an insertion the adversary doesn’t participate in future rollup
creation, from that point on *nobody else* can create a valid rollup and the

system is frozen and unable to process for any future transactions.

Incomplete tree constraints, leading to a freeze of the rollup validation

https://medium.com/aztec-protocol/vulnerabilities-found-in-aztec-2-0-9b80c8bf416c¢

32

https://medium.com/aztec-protocol/vulnerabilities-found-in-aztec-2-0-9b80c8bf416c
https://medium.com/aztec-protocol/vulnerabilities-found-in-aztec-2-0-9b80c8bf416c

DoS / Completeness? — DSL / Signatures

h
@ veorq commented yesterday @ -

crypto.signature.signature.verify() rejects signatures with an r, inverse s, or message (hash) greater than 2x%251 <
EC_ORDER :

cairo-lang/src/starkware/crypto/starkware/crypto/signature/signature.py
Lines 199 to 201 in 4e23351

199 assert 1 <= r < 2 %k N _ELEMENT BITS ECDSA, "r = %s" % r
200 assert 1 <= w < 2 %k N_ELEMENT BITS ECDSA, "w = %s" % w
201 assert @ <= msg_hash < 2 *x N_ELEMENT_BITS_ECDSA, "msg_hash = %s" % msg_hash

There's a gap of ~27196 values, thus a probability to hit aninvalid r or s thatis of the order of 27(196-251)/2 = 2754,

when generating an ECDSA sig for some fixed message using a standard algorithm (rather than Cairo's sign() , which
enforces these constraints).

| can't think of a specific attack scenario at the moment, but | would expect to find applications where either

1. that accidental failure rate would be unacceptably high, or

2. adversaries could bruteforce invalid sigs to do some kind of DoS, or worse (with plausible deniability)

| probably miss some of the context, and you may have a good reason to verify sigs that way.

Valid signatures rejected, risk initially deemed negligible

https://github.com/starkware-libs/cairo-lang/issues/39

https://github.com/starkware-libs/cairo-lang/issues/39
https://github.com/starkware-libs/cairo-lang/issues/39

Other types of bugs

Crypto issues such as:
Pedersen bases generation/uniqueness
Padding scheme in algebraic hashes and commitments
Non-conform implementations of crypto schemes (e.g. Poseidon algebra bugs)
Insufficient data being “Fiat-Shamir'd" from the transcript
Composability: unsafe interactions between nested proof systems

Side channels: Non-ct code, RAM leakage, speculative execution leaks

34

Conclusions

% Why not be too scared?
Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)
DSLs (Cairo, Leo, etc.) make it easier to write safe code

Relatively narrow attack surface in practice

35

Conclusions

% Why not be too scared?
Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)
DSLs (Cairo, Leo, etc.) make it easier to write safe code
Relatively narrow attack surface in practice
(&2 Why be scared?
Few people understand zkSNARKs, even fewer can find bugs
Lack of tooling (wrt testing, fuzzing, verification)

More ZKPs used => more $$$ at stake => greater Rol for vuln researchers

36

Thank you!

JP Aumasson

I @veorq
CSO @ taurushg.com

Thanks to Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink, Ldcas Meier, Mathilde Raynal

http://taurushq.com
http://taurushq.com

