
Zero-knowledge proofs security, in practice

JP Aumasson

@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

NIZK arguments security, in practice

JP Aumasson

@veorq

CSO @ taurushq.com

http://taurushq.com
http://taurushq.com

This talk

Focus on zkSNARKs, a class of NIZK arguments

Fully succinct = O(1) proof size and O(circuit size) verification time

Based on my experience looking for bugs in systems using

Groth16, used in Zcash, Filecoin, and many others

Marlin, a universal zkSNARK, used in Aleo

Most of the content applies to other systems (Plonk, SONIC, etc.) and STARKs

3

Why study zkSNARKs security?

For blockchain projects: A major risk:

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$ and user data/privacy)

4

Why study zkSNARKs security?

For blockchain projects: A major risk:

Complexity + Novelty => Non-trivial bugs

A lot at stake ($$$ and user data/privacy)

As a cryptographer: The most interesting crypto today:

Solving real-world problems and deployed at scale (good papers + good code!)

Intricate constructions with non-trivial components

“Simple but complex" (non-interactive, many moving parts)

“Multidimensional" way to reason about security
5

What is zkSNARKs security?

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected

Forging, altering, replaying valid proofs should be impossible

6

What is zkSNARKs security?

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak witness information (private variables)

In practice succinct proofs of large programs can leak only little data

7

What is zkSNARKs security?

Soundness, often the highest risk in practice:

Invalid proofs should always be rejected

Forging, altering, replaying valid proofs should be impossible

Zero-knowledge: Proofs should not leak witness information (private variables)

In practice succinct proofs of large programs can leak only little data

Completeness, often a DoS/usability risk that may be further exploited:

Valid proofs should always be accepted

All programs/circuits supported should be correctly processed

8

Bug hunting challenges

Practical zkSNARKs are recent, thus auditors often have

Limited experience auditing ZKPs

Limited knowledge of the theory, of implementations’ tricks

Limited “checklist" of bugs and bug classes

Limited tooling and methodology

Most bugs found internally or by teams of similar projects

9

New crypto, new approach

More collaboration with the devs/designers (joint review sessions, Q&As, etc.)

More threat analysis, to understand the application’s unique/novel risks

Practical experience: writing PoCs, circuits, proof systems, etc.

Learn previous failures, for example from…

Public disclosures and exploits

Other audit reports

Issue trackers / PRs

Community

10

General workflow, and failure examples

11

Computation

Circuit definition

Arithmetization

Non-interactive proof

Integration

General workflow, and failure examples

12

Computation

Circuit definition

Arithmetization

Non-interactive proof

Integration

The program’s logic is not secure

The circuit is not equivalent to the program

The CS fails to enforce an operation a constraint

Bad choice of internal commitment schemes wrt
hiding or binding properties

The application allows replays of previous proofs

How to break zkSNARKs security? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of proving keys

13

How to break zkSNARKs security? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of proving keys

Break zero-knowledge, for example by exploiting

Private data treated as public variables

Protocol-level “metadata attacks”

14

How to break zkSNARKs security? (1/2)

Break soundness, for example by exploiting

Constraint system not effectively enforcing certain constraints

Insecure generation or protection of proving keys

Break zero-knowledge, for example by exploiting

Private data treated as public variables

Protocol-level “metadata attacks”

Break completeness, for example by exploiting

Incorrect R1CS synthesis behaviour on edge cases (e.g. wrt number of private vars)

Gadget composition failure caused by type mismatch between gadget i/o values
15

How to break zkSNARKs security? (2/2)

Break (off-chain) software, via any bug leading to

Leakage of data, including via side channels, encodings (“ZK execution”)

Any form in insecure state (code execution, DoS)

Compromise the supply-chain, via

Trusted setup's code and execution

Build and release process integrity

Software dependencies

16

How to break zkSNARKs security? (2/2)

Break (off-chain) software, via any bug leading to

Leakage of data, including via side channels, encodings (“ZK execution”)

Any form in insecure state (code execution, DoS)

Compromise the supply-chain, via

Trusted setup's code and execution

Build and release process integrity

Software dependencies

Break (on-chain) software (incl. verifier) via smart contract bugs, logic flaws, etc.

17

Multiple layers

18

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation  
from fixed or user-defined circuit

Multiple layers

19

A failure in a lower layer can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Zero-knowledge greater risks

Completeness and  
Soundness greater risks

Field arithmetic, elliptic curves group operations

Arithmetization / constraints generation  
from fixed or user-defined circuit

Multiple layers

20

Field arithmetic, elliptic curves group operations

A failure in a subcomponent can jeopardise the security of all upper layers

Platform: language, runtime, OS, hardware, dependencies

Arithmetization / constraints generation  
from fixed or user-defined circuit

Prover/verifier

Application

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Hashing, PRF, Algebraic commitment,
Randomness, Merkle trees, …

Fiat-Shamir, Polynomial commitments,
Hash-to-curve, linear algebra, …

Key/nonce management, Testing Interface, Side channels, Replays

Fast operations, multi-exp, …

R1CS, AIR, polynomials, …

RNG, …

..

Multiple layers

21

Security 101: Input validation must be defined, implemented, and tested

Prover/verifier
Elliptic curves, Pairings, Hash functions, PRF, Algebraic commitment

Randomness, Merkle trees Linear algebra, Multi-exp.
Polynomial commitments, Fiat-Shamir transforms, etc. etc.

Application Key management, Testing Interface, Side channels

😈 Adversarial input 😈 🥴 Protocol input 🥴 😐 Config 😐

Contracts between components must be defined
to prevent insecure composition

Example: which component is responsible  
for group membership checks?

22

Soundness – Field arithmetic

Root cause: Missing overflow check (of a nullifier ~ unique ID of a shielded payment)

https://github.com/appliedzkp/semaphore/issues/16

23

https://github.com/appliedzkp/semaphore/issues/16
https://github.com/appliedzkp/semaphore/issues/16

Soundness – Field arithmetic

Missing overflow check (of a public input)

https://github.com/eea-oasis/baseline/issues/34

24

https://github.com/eea-oasis/baseline/issues/34
https://github.com/eea-oasis/baseline/issues/34

Soundness – Field arithmetic

Missing overflow check (of a public input)

https://github.com/appliedzkp/semaphore/pull/96/

25

https://github.com/appliedzkp/semaphore/pull/96/
https://github.com/appliedzkp/semaphore/pull/96/

Soundness – R1CS

Field element inverse property not enforced by the constraint system

https://github.com/arkworks-rs/r1cs-std/pull/70

26

https://github.com/arkworks-rs/r1cs-std/pull/70
https://github.com/arkworks-rs/r1cs-std/pull/70

Soundness – Hash validation

Coding error, allowing to fake the witness’ Merkel root and forge proofs

https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

27

https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8

Soundness – Paper / Setup

Theoretical flaw in the paper’s setup description (sensitive values not cleared)

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

28

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/

Zero-knowledge – Application (Aztec)

Nonces not correctly set by the application, breaking privacy

https://medium.com/@jaosef/54dff729a24f (Aztec 2.0 Pre-Launch Notes)

29

https://medium.com/@jaosef/54dff729a24f
https://medium.com/@jaosef/54dff729a24f

Zero-knowledge – Application (Zcash)

Correlations between (shielded) transactions  
leaking exploitable information

https://eprint.iacr.org/2020/627.pdf

30

https://eprint.iacr.org/2020/627.pdf
https://eprint.iacr.org/2020/627.pdf

Zero-knowledge – Prover (Plonkup)

Missing (randomized) blinding to hide private inputs – potential ZK loss

https://github.com/dusk-network/plonk/pull/651

31

https://github.com/dusk-network/plonk/pull/651
https://github.com/dusk-network/plonk/pull/651

DoS – Merkle tree

Incomplete tree constraints, leading to a freeze of the rollup validation

https://medium.com/aztec-protocol/vulnerabilities-found-in-aztec-2-0-9b80c8bf416c

32

https://medium.com/aztec-protocol/vulnerabilities-found-in-aztec-2-0-9b80c8bf416c
https://medium.com/aztec-protocol/vulnerabilities-found-in-aztec-2-0-9b80c8bf416c

DoS / Completeness? – DSL / Signatures

Valid signatures rejected, risk initially deemed negligible

https://github.com/starkware-libs/cairo-lang/issues/39

33

https://github.com/starkware-libs/cairo-lang/issues/39
https://github.com/starkware-libs/cairo-lang/issues/39

Other types of bugs

Crypto issues such as:

Pedersen bases generation/uniqueness

Padding scheme in algebraic hashes and commitments

Non-conform implementations of crypto schemes (e.g. Poseidon algebra bugs)

Insufficient data being “Fiat-Shamir'd" from the transcript

Composability: unsafe interactions between nested proof systems

Side channels: Non-ct code, RAM leakage, speculative execution leaks

34

Conclusions

😌 Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

DSLs (Cairo, Leo, etc.) make it easier to write safe code

Relatively narrow attack surface in practice

35

Conclusions

😌 Why not be too scared?

Robust code and frameworks (e.g. Rust projects such as arkworks and zkcrypto)

DSLs (Cairo, Leo, etc.) make it easier to write safe code

Relatively narrow attack surface in practice

😱 Why be scared?

Few people understand zkSNARKs, even fewer can find bugs

Lack of tooling (wrt testing, fuzzing, verification)

More ZKPs used => more $$$ at stake => greater RoI for vuln researchers

36

Thank you!

JP Aumasson

@veorq

CSO @ taurushq.com

Thanks to Aleo, Protocol Labs, Kobi Gurkan, Adrian Hamelink, Lúcás Meier, Mathilde Raynal

http://taurushq.com
http://taurushq.com

