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hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.



ition:
\-3 for H.
s collision-resistant!

sons this is bad:
ery slow.
asn't solve the problem.

d £

yllision-resistant.

I: eg., £ =2

er how strong H s,
can easily compute
d 220 for many s
nulticollisions.

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28
“Efficier

on web .

Java, JF
Python
Ruby, A
Tomcat,

Plone, R
Engine.

oCERT

Applicat
USse secr
. but



resistant!

s bad:

- the problem.

Istant.
=220,
ong H s,
- compute

many s
ons.

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28C3), Klin
“Efficient denial o
on web applicatior

Java, JRuby, PHP
Python 2, Python
Ruby, Apache Ger
Tomcat, Oracle G

Plone, Rack, V8 J
Engine.

oCERT advisory 2

Application respor
use secret key to |
... but Is this sec



cm.

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28C3), Klink—Walde,
“Efficient denial of service a
on web application platform

Java, JRuby, PHP 4, PHP &
Python 2, Python 3, Rubini
Ruby, Apache Geronimo, Ar
Tomcat, Oracle Glassfish, Je
Plone, Rack, V8 Javascript
Engine.

oCERT advisory 2011-003.

Application response:
use secret key to randomize
... but is this secure?



2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28C3), Klink—Walde,
“Efficient denial of service attacks
on web application platforms’:

Java, JRuby, PHP 4, PHP 5,
Python 2, Python 3, Rubinius,
Ruby, Apache Geronimo, Apache
Tomcat, Oracle Glassfish, Jetty,
Plone, Rack, V8 Javascript
Engine.

oCERT advisory 2011-003.

Application response:
use secret key to randomize H.
... but is this secure?
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MurmurHash?2

“used in code by Google, Microsofft,

Yahoo, and many others”

CRuby, JRuby, Redis



MurmurHash3

“successor to MurmurHash2”

Oracle & OpenJDK, Rubinius



1. Theory

Safety &
| Main Arming  Fibre Optic
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MurmurHash2, 64 bit CRuby



const uint64_t m = (0xc6bad4a793 << 32) | 0x5bd1e995
uinté4 t h = seed N len;

while (len >= 8) {

uint64 t k = *(uint64 t*)data;

>0

m,
k >> 24;

AN AN A
>

>+



const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uint64 t h = seed N len;

while (len >= 8) {

uint64 t k = *(uint64 t*)data;

>0

m,
k >> 24;

AN AN A
>

>+



block processing independent of seed



/* finalization */

switch (len) {

case
case
case
case
case
case
case
h *=

S =N WPk~ UIO J

D D D B B B el

O O O O O o o

atal
atal
atal
atal
atal
atal
atal

O -=-DNWDKDUIO

<<
<<
<<
<<
<<
<<

48 :
40 ;
32;
24
16;



8-byte-aligned data = skip finalization



differential cryptanalysis



Introduce a difference
INn the state h via Input k

cancel 1t again with
a second well-chosen difference



const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* first block */

uint64 t k = *(uint64 t*)data;

K *= m; /* inject difference D1 */
K A=k >> 24;

K *= m;

h *= m;

h A= k,

data += 8;

len -= 8;



const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* first block */

uint64 t k = *(uint64 t*)data;

>0

K
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/* inject difference D1 */
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const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* first block */

uint64 t k = *(uint64 t*)data;

>0

K *= m; /* inject difference D1 */

K A=k >> 24;

K *=m; /* diff in k: 0x8000000000000000 */
h *= m;

h A= k; /* diff in h: 0x8000000000000000 */
data += 8§;

len -= 8;



const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* second block */

uint64 t k = *(uint64 t*)data;

>0

K
<

/* inject difference D2 */

- e

s X 3
V
V
No
AN

>

A\
*

/* diff in k: 0x8000000000000000 */

- e

> I
> X%
i

AN 3

data += 8;
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const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* second block */

uint64 t k = *(uint64 t*)data;

>0

K *= m; /* inject difference D2 */

kK A=k >> 24:

K *=m; /* diff in k: 0x8000000000000000 */

h *= m; /* diff in h still: O0x8000000000000000 */
h A= k;

data += 8§;

len -= 8;



const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* second block */

uint64 t k = *(uint64 t*)data;

>0

K *= m; /* inject difference D2 */
kK A=k >> 24:
K *=m; /* diff in k: 0x8000000000000000 */
h *= m; /* diff in h still: O0x8000000000000000 */
h A= k; /* COLLISION !!]
(0x80... A 0x80... = 0) */
data += 8§;
len -= 8;



M1 M2 M3 M4 M5 M6

\ \ \4 W/
- > - > -

collision collision collision

chain collisions = multicollisions
1on bytes = 2" colliding inputs



multicollision works for any seed

=) “universal’ multicollisions



same principle
slightly more complicated for
MurmurHash3



conseqgquence



systems using MurmurHash2/3
remain
vulnerable to hash-flooding



2. Practice




Breaking Murmur:

we've got the recipe —

now all we need is the (hash) cake




where are hashes used?



parser symbol tables
method lookup tables
attributes / instance variables
Ip addresses
transaction i1ds
database indexing
session 1ds
http headers
Jjson representation
url-encoded post form data
deduplication (HashSet)
A* search algorithm
dictionaries



=) where aren't they used?



just recently

hash-DoS in btrfs file system (!)

http://crypto.junod.info/2012/12/13/hash-dos-and-btrfs/




can't we use something different?



we could

but amortized constant time
IS Just too sexy



possible real-life attacks



need a high-profile target



web application



example #1

rails



first

attacking MurmurHash in ruby



apply the recipe



le demo



should work with rails

out of the box, no?



unfortunately, no



def parse_nested_query(gs, d = nil)
params = KeySpaceConstrainedParams.new
(qgs || "').split(d ? /[#{d}] */n . DEFAULT_SEP).each do |p]|

k, v = p.split('=", 2).map { |s| unescape(s) }
normalize_params(params, Kk, V)

end
return params.to_params_hash

end



def unescape(s, encoding = Encoding::UTF_8)
URI.decode_www_form_component(s, encoding)

end



def self.decode_www_form_component(str, enc=Encoding::UTF_8)

raise ArgumentError, "invalid %-encoding (#{str})"
unless /\A["%]*(?:%\h\h[A%]*)*\z/ =~ str

str.gsub(/\+|%\h\h/, TBLDECWWWCOMP_) .force_encoding(enc)

end



NAL%]*(?:%\h\h1"%]*)*\z/

227



catches invalid % encodings

(e.g. wWZV, %%1 instead of %2F)



def parse_nested_query(gs, d = nil)
params = KeySpaceConstrainedParams.new
(qgs || "').split(d ? /[#{d}] */n . DEFAULT_SEP).each do |p]|

k, v = p.split('="', 2).map { |s| unescape(s) }
normalize_params(params, k, V)

end
return params.to_params_hash

end



def normalize_params(params, name, v = nil)
name =~ %r(\ALN[NTT*CIANINTT+)NT™)

K =81 [ "

ena



Y%or CANN (AN T+
72?2



helps transform [[1] to []



Idea

pre-generate matching values



create random values

passing the regular expressions



that should do it, right?



CONFIDENCE: The feeling you experience




def parse_nested_query(gs, d = nil)
params = KeySpaceConstrainedParams.new
(qgs || "').split(d ? /[#{d}] */n . DEFAULT_SEP).each do |p]|

k, v = p.split('="', 2).map { |s| unescape(s) }
normalize_params(params, Kk, V)

end
return params.to_params_hash

end



class KeySpaceConstrainedParams
def []=(key, value)
@size += key.size 1f key && !@params.key?(key)

raise RangeError, 'exceeded available parameter key space’
if @size > @limit

@params[key] = value
end

end
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what now? rails 1s safe?

FFFFFFF
FFFFFFF
FFFFFF
FFFUU
Uuuu
| UUUU
luuuu
“/ 4] UUUU
UUuUu-



remember:

hashes are used everywhere



SO If
application/x-www-form-urlencoded
doesn’'t work, how about

application/json

?



again, with the encoding...



fast-forward...



le demo



conclusion

patchwork i1s not helping



too many places



code bloat



vet another loophole will be found






example #2

java, enterprise™ edition



just apply the recipe (?)



String(bytell bytes)



public String(byte bytes[], int offset, int length,
Charset charset) {

char[] v = StringCoding.decode(charset, bytes, offset, length);

ﬁ—.—/

\ problem, byte[] ?



tough nut to crack



what now? java Is safe?

FFFFFFF
FFFFFFF
FFFFFF
FFFUU
Uuuu
| UUUU
luuuu
“/ 4] UUUU
UUuUu-



String(charll value)



public String(char value[]) A

int size = value.length;

this.offset = 0;

this.count = size;

this.value = Arrays.copyOf(value, size);




no decoding!



substitute bytell operations
with equivalent operations

on charll



le demo



disclosure

oracle (java): sep 11

cruby, jruby, rubinius: aug 30



oCERT advisory

CVEs were assigned



more.
http://emboss.github.com/blog

code:
https://github.com/emboss/schadcode



reactions



Java






ruby



cruby && Jruby && rubinius == fixed

=) true

http://www.ruby-lang.org/en/news/2012/11/09/ruby19-hashdos-cve-2012-5371/

http://iruby.org/2012/12/03/jruby-1-7-1.html

https://github.com/rubinius/rubinius/commit/a9a40fc6a1256bcf6382631b710430105c5dd868




they did a fantastic job

(like last year)



so what was the fix?

how can we fix this?



1 fix it




Dont use MurmurHash



CityHash?



“Inside Google, where CityHash
was developed starting in 2010,
we use variants of CityHash64()

mainly In hash tables such as
hash map<string, int>/”

https://code.google.com/p/cityhash



CityHash is weaker than MurmurHash

CityHash64( OY | L&:S;+[&HASH!, 16) = b553de6f34e878f
CityHash64(JkMR_ O\7](HASH!, 16) =b553de6f34e878f
CityHash64( <jil7g;s, (HASH!, 16 ) = b553de6f34e878f
CityHash64( e: yn"sg*a(HASH!, 16 ) = b553de6f34e878f
CityHash64( dt6PG8}?0z(HASH!, 16 ) = b553de6f34e878f
CityHash64( 8c-lkD% Eo)HASHI!, 16) = b553de6f34e878f
CityHash64( TdIx>DnK-1*HASH!, 16 ) =b553de6f34e878f
CityHash64(iM:91=S"|e*HASH!, 16) =b553de6f34e878f
CityHash64( Z,r |5xMOI*HASH!, 16) =b553de6f34e878f
CityHash64( .QH~S!9P(p*HASH!, 16 ) =b553de6f34e878f
CityHash64( {pF*"wkd[F+HASH!, 16 ) =b553de6f34e878f

CityHash64( i< @) oy+?,HASH!, 16 ) = b553de6f34e878f
CityHash64( BU9[85WWp/ HASH!, 16 ) = b553de6f34e878f
CityHash64( 8{YDLn;d.2 HASH!, 16) = b553de6f34e878f

CityHash64( d+nkK&t?yr HASH!, 16 ) =b553de6f34e878f
CityHashoe4( {A.#v5i]V{ HASH! 16) = b553de6f34e878f



Python's hash()?



S python -V
Python 2.7.3
S time -p python -R poc.py

04 candidate solutions

Verified solutions for
- Py HashSecret:

145ccY9aade’7d2453 275dafoe070ad41b99

945ccY9%9aade/dZ2453 a’bdafo070a41b99o
real 0.32

user 0.17
sys 0.02




Python 2.x and 3.x

» Randomization of hash() optional (-R)

* Instantaneous key recovery
* Multicollisions with TMTO



NET's Marvin32?




Something designed to be secure?



SipHash: a fast short-input PRF

New keyed hash to fix hash-flooding:
e Rigorous security requirements and analysis

e Speed competitive with that of weak hashes
e Can serve as MAC or PRF

Peer-reviewed research paper (A., Bernstein).
published at DIAC 2012, INDOCRYPT 2012



SipHash initialization

2560-bit state vO vl v2 v3
128-bit key kO k

vO = kO @ 0x736f6d6570736575
vl =kl D 0x646f72616e646f6d

v2 = kO & 0x6c7967656e657261
v3 =kl @ 0x7465646279746573



SipHash initialization

2560-bit state vO vl v2 v3
128-bit key kO k

vO = kO &@ “somepseu”
vl =kl & “dorandom”
v2 = kO & “lygenera”
v3 =kl @ “tedbytes”



SipHash compression

Message parsed as 64-bit words mO, m1, ..

v3i =m0
c Iterations of SipRound
vO &=m0




SipHash compression

Message parsed as 64-bit words mO, m1, ..

v3 O=m1l
c Iterations of SipRound
vO = m1l




SipHash compression

Message parsed as 64-bit words mO, m1, ..

v3 @=m2
c Iterations of SipRound
vO = m2




SipHash compression

Message parsed as 64-bit words mO, m1, ..

Etc.



SipRound

K 13

o

N
/

"< 17

-/«@:: 32

<K 16

B

L/

N




SipHash finalization

v2 6= 255
d iterations of SipRound
Returnvo @ vl @ v2 @ v3



SipHash-2-4 hashing 15 bytes

T

T

ko k1

a

punoyydig
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Family SipHash-c-d
Fast proposal: SipHash-2-4
Conservative proposal: SipHash-4-8

Weaker versions for cryptanalysis:
SipHash-1-0, SipHash-2-0, etc.
SipHash-1-1, SipHash-2-1, etc.

Etc.



Security claims

~ 2128 key recovery

~ 2192 state recovery

~ 2128 internal-collision forgery
~ 25 forgery with probab. 2564



Fast diffusion of differences, thanks
to optimized rotation counts

Round Differences Prob.
................................................ - P

1 1 (1
................................ DT - S - SE (1)
D < DT - 8. 8.....1...1.8...

2 13 (14)
S - T 9...8.....1.8.1.8... 8.1uuuv... 1.un..
..1.8..... 1..... 8..... 11a.1.1 8.1.1...8 1. 8.1.82....... 2..

3 42 (56)
a...1...8.1.8.11 8.12b413a2. .. .00 +... 92..8....21. 82..92..82..82..
99..82...21..211 e835621322.1.235 22...21.8.122613 621.c21.42..42.3

4 103 (159)

2.11..24ca3b5e.13 66778453..57bd22 4.1.c...c212641. 82..82..8.11.6..

a21182244a24e613 2ecld44fcb8.115dd c245d93226674453 e2.18..48a34a6.3
5 152 (311)

£225f3ce8cd.c6d8 ad44f51d8d.% 5616 2.445936acb3e25. a.4.d3.2.a5...51

6 52652 .cc868.c689 27Tbaa9d2d.e.fcdB8 Tccdb44684.b.8Bee 32246accBcbdcedsl 187 (498)
566 .3ab175df891e 2.ebd3.249fb3eabt 4ee9deBa.8bfct7d 2425523ecH2cf459

Combination of ADD and XOR ensures a high
nonlinearity (e.g. against cube attacks)



How fast Is SipHash-2-47

On an old AMD Athlon Il Neo (@1.6GHz)

Bytes 8 16 32 64
Cycles 123 134 158 204
(per byte) [(15.38) [(8.38) [(4.25) |(3.19)
MiBps 99 182 359 478

Long messages: 1.44 cycles/byte (1 GiBps)




cycles

lE'[:]E] T —— T 71+ *1® T "+ ’/1V/ " *™1v "1 1" 11— 711
SipHash A T
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Proof of simplicity

June 20: paper published online

June 28: 18 third-party
Implementations

C (Floodyberry, BoBlet, Neves); C# (Haynes)

Cryptol (Lazar); Erlang, Javascript, PHP (Denis)
Go (Chestnykh); Haskell (Hanquez)

Java, Ruby (BoBlet); Lisp (Brown); Perl6 (Julin)



Who is using SipHash?




Take home message

Hash-flooding DoS works by enforcing worst
case In data structure operations through large
multicollisions in the hash function

Java and Rubies found vulnerable, due to their
use of MurmurHash v2 or v3

CityHash and Python’s hash are weak too..

SipHash offers both security and performance



SipHash paper, code, etc. available on
https://131002.net/siphash

Attacks paper coming soon..



