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“Efficient denial of service attacks

on web application platforms”:

Java, JRuby, PHP 4, PHP 5,

Python 2, Python 3, Rubinius,

Ruby, Apache Geronimo, Apache

Tomcat, Oracle Glassfish, Jetty,

Plone, Rack, V8 Javascript

Engine.

oCERT advisory 2011–003.

Application response:

use secret key to randomize H.

: : : but is this secure?



Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

2011 (28C3), Klink–Wälde,
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“used in code by Google, Microsoft, 

Yahoo, and many others”  

 



 

“successor to MurmurHash2” 

 

 

 







   

   

 

   

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) { 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m; 
    k ^= k >> 24; 
    k *= m; 
 
    h *= m; 
    h ^= k; 
 
    data += 8; 
    len -= 8; 

 } 
 
 
 



 

 

 

   

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) { 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m; 
    k ^= k >> 24; 
    k *= m; 
 
    h *= m; 
    h ^= k; 
 
    data += 8; 
    len -= 8; 

 } 
 
 
 





 

 

 

 

  … 

  /* finalization */  

 

  switch (len) { 
 
      case 7: h ^= data[6] << 48; 
      case 6: h ^= data[5] << 40; 
      case 5: h ^= data[4] << 32; 
      case 4: h ^= data[3] << 24; 
      case 3: h ^= data[2] << 16; 
      case 2: h ^= data[1] << 8; 
      case 1: h ^= data[0]; 
      h *= m; 
 
  }; 
 
  … 
 
 
 
 









  

 

 

  

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) {  /* first block */ 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m;           /* inject difference D1 */ 
    k ^= k >> 24; 
    k *= m;  
           
    h *= m;            
    h ^= k;            
 
    data += 8; 
    len -= 8; 

 } 
 
 
 



  

 

 

  

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) {  /* first block */ 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m;           /* inject difference D1 */ 
    k ^= k >> 24; 
    k *= m;    /* diff in k: 0x8000000000000000 */ 
           
    h *= m;            
    h ^= k;            
 
    data += 8; 
    len -= 8; 

 } 
 
 
 



  

 

 

  

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) {  /* first block */ 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m;           /* inject difference D1 */ 
    k ^= k >> 24; 
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    data += 8; 
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  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) {  /* second block */ 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m;           /* inject difference D2 */ 
    k ^= k >> 24; 
    k *= m;           /* diff in k: 0x8000000000000000 */ 
           
    h *= m;            
    h ^= k;            
 
    data += 8; 
    len -= 8; 

 } 
 
 
 



  

 

 

  

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) {  /* second block */ 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m;           /* inject difference D2 */ 
    k ^= k >> 24; 
    k *= m;           /* diff in k: 0x8000000000000000 */ 
           
    h *= m;           /* diff in h still: 0x8000000000000000 */ 
    h ^= k;            
 
    data += 8; 
    len -= 8; 

 } 
 
 
 



  

 

 

  

  const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995; 
  uint64_t h = seed ^ len; 

 
  while (len >= 8) {  /* second block */ 
 
    uint64_t k = *(uint64_t*)data; 
 
    k *= m;           /* inject difference D2 */ 
    k ^= k >> 24; 
    k *= m;           /* diff in k: 0x8000000000000000 */ 
           
    h *= m;           /* diff in h still: 0x8000000000000000 */ 
    h ^= k;           /* COLLISION !!! 
                         (0x80... ^ 0x80... = 0) */ 
    data += 8; 
    len -= 8; 

 } 
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collision 
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http://crypto.junod.info/2012/12/13/hash-dos-and-btrfs/

























  def parse_nested_query(qs, d = nil) 
   
    params = KeySpaceConstrainedParams.new 
 
    (qs || '').split(d ? /[#{d}] */n : DEFAULT_SEP).each do |p| 
     
      k, v = p.split('=', 2).map { |s| unescape(s) } 
      normalize_params(params, k, v) 
   
    end 
 
    return params.to_params_hash 
 
  end 



  def unescape(s, encoding = Encoding::UTF_8) 
 
    URI.decode_www_form_component(s, encoding) 
 
  end 



  def self.decode_www_form_component(str, enc=Encoding::UTF_8) 
 
    raise ArgumentError, "invalid %-encoding (#{str})" 
        unless /\A[^%]*(?:%\h\h[^%]*)*\z/ =~ str 
   
    str.gsub(/\+|%\h\h/, TBLDECWWWCOMP_).force_encoding(enc) 
 
  end 







  def parse_nested_query(qs, d = nil) 
   
    params = KeySpaceConstrainedParams.new 
 
    (qs || '').split(d ? /[#{d}] */n : DEFAULT_SEP).each do |p| 
     
      k, v = p.split('=', 2).map { |s| unescape(s) } 
      normalize_params(params, k, v) 
   
    end 
 
    return params.to_params_hash 
 
  end 



  def normalize_params(params, name, v = nil) 
   
    name =~ %r(\A[\[\]]*([^\[\]]+)\]*) 
   
    k = $1 || '' 
 
    … 
  end 





 











  def parse_nested_query(qs, d = nil) 
   
    params = KeySpaceConstrainedParams.new 
 
    (qs || '').split(d ? /[#{d}] */n : DEFAULT_SEP).each do |p| 
     
      k, v = p.split('=', 2).map { |s| unescape(s) } 
      normalize_params(params, k, v) 
   
    end 
 
    return params.to_params_hash 
 
  end 



  class KeySpaceConstrainedParams 
 
    def []=(key, value) 
   
      @size += key.size if key && !@params.key?(key) 
   
      raise RangeError, 'exceeded available parameter key space‘  
          if @size > @limit 
   
      @params[key] = value 
 
    end 
 
  end 

























Fix it  

at the  

root 



  

TM 







public String(byte bytes[], int offset, int length,  
                Charset charset) { 
  … 
 
  char[] v = StringCoding.decode(charset, bytes, offset, length); 
 
  … 
 
} 

problem, byte[] ? 









  public String(char value[]) { 
 
      int size = value.length; 
      this.offset = 0; 
      this.count = size; 
      this.value = Arrays.copyOf(value, size); 
 
  } 























http://www.ruby-lang.org/en/news/2012/11/09/ruby19-hashdos-cve-2012-5371/

 
http://jruby.org/2012/12/03/jruby-1-7-1.html 

 
https://github.com/rubinius/rubinius/commit/a9a40fc6a1256bcf6382631b710430105c5dd868  









Don’t use MurmurHash 



CityHash? 



“Inside Google, where CityHash 

was developed starting in 2010, 

we use variants of CityHash64() 

mainly in hash tables such as 
hash_map<string, int>.” 
https://code.google.com/p/cityhash/  

 



CityHash64( 0Y|L&:$;+[&HASH!, 16 ) 
CityHash64( JkMR_ 0\7](HASH!, 16 ) 
CityHash64( <jiI7g;s,`(HASH!, 16 ) 
CityHash64( e: yn"sg^a(HASH!, 16 ) 
CityHash64( dt6PG8}?oz(HASH!, 16 ) 
CityHash64( 8c-lkD%_Eo)HASH!, 16 ) 
CityHash64( TdIx>DnK-1*HASH!, 16 ) 
CityHash64( iM:9l=S"|e*HASH!, 16 ) 
CityHash64( Z,r_|5xM0l*HASH!, 16 ) 
CityHash64( .QH~S!9P(p*HASH!, 16 ) 
CityHash64( {pF*"wkd[F+HASH!, 16 ) 
CityHash64( i< @)`oy+?,HASH!, 16 ) 
CityHash64( BU9[85WWp/ HASH!, 16 ) 
CityHash64( 8{YDLn;d.2 HASH!, 16 ) 
CityHash64( d+nkK&t?yr HASH!, 16 ) 
CityHash64( {A.#v5i]V{ HASH!, 16 ) 
CityHash64( FBC=/\hJeA!HASH!, 16 ) 
CityHash64( $03$=K1.-H!HASH!, 16 ) 
 

= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 
= b553de6f34e878f 

CityHash is weaker than MurmurHash 



Python’s hash()? 



$ python -V 

Python 2.7.3 

$ time -p python -R poc.py  

64 candidate solutions 

Verified solutions for 

_Py_HashSecret: 

145cc9aade7d2453 275daf6070a41b99 

945cc9aade7d2453 a75daf6070a41b99 

real 0.32 

user 0.17 

sys 0.02 



Python 2.x and 3.x 
• Randomization of hash() optional (-R) 

• Instantaneous key recovery 

• Multicollisions with TMTO 

 



.NET’s Marvin32? 

 

 



Something designed to be secure? 



SipHash: a fast short-input PRF 
 

New keyed hash to fix hash-flooding: 

• Rigorous security requirements and analysis 

• Speed competitive with that of weak hashes 

• Can serve as MAC or PRF 

 

Peer-reviewed research paper (A., Bernstein). 

published at DIAC 2012, INDOCRYPT 2012 



SipHash initialization 
 

256-bit state v0 v1 v2 v3 

128-bit key k0 k1 
 

v0 = k0 ⊕ 0x736f6d6570736575 

v1 = k1 ⊕ 0x646f72616e646f6d 

v2 = k0 ⊕ 0x6c7967656e657261 

v3 = k1 ⊕ 0x7465646279746573 

 



SipHash initialization 
 

256-bit state v0 v1 v2 v3 

128-bit key k0 k1 
 

v0 = k0 ⊕ “somepseu” 

v1 = k1 ⊕ “dorandom” 

v2 = k0 ⊕ “lygenera” 

v3 = k1 ⊕ “tedbytes” 

 



SipHash compression 
 

Message parsed as 64-bit words m0, m1, … 

 

v3 ⊕= m0 

c iterations of SipRound 

v0 ⊕= m0  



SipHash compression 
 

Message parsed as 64-bit words m0, m1, … 

 

v3 ⊕= m1 

c iterations of SipRound 

v0 ⊕= m1  



SipHash compression 
 

Message parsed as 64-bit words m0, m1, … 

 

v3 ⊕= m2 

c iterations of SipRound 

v0 ⊕= m2  



SipHash compression 
 

Message parsed as 64-bit words m0, m1, … 

 

 

Etc. 



SipRound 
 

 



SipHash finalization 
 

 

v2 ⊕= 255 

d iterations of SipRound 

Return v0 ⊕ v1 ⊕ v2 ⊕ v3 

 



SipHash-2-4 hashing 15 bytes 



Family SipHash-c-d 

Fast proposal: SipHash-2-4 

Conservative proposal: SipHash-4-8 
 

Weaker versions for cryptanalysis: 

SipHash-1-0, SipHash-2-0, etc. 

SipHash-1-1, SipHash-2-1, etc. 

Etc. 



Security claims 
 

≈ 2128 key recovery 

≈ 2192 state recovery 

≈ 2128 internal-collision forgery 

≈ 2s forgery with probab. 2s-64 



Fast diffusion of differences, thanks 

to optimized rotation counts 
 

 

 

 

 

 
 

 

 

Combination of ADD and XOR ensures a high 

nonlinearity (e.g. against cube attacks) 



How fast is SipHash-2-4? 
 

On an old AMD Athlon II Neo (@1.6GHz) 

 

 
 

 

 

Long messages: 1.44 cycles/byte (1 GiBps) 

 

 

 

 

 

Bytes 8 16 32 64 

Cycles 
(per byte) 

123 

(15.38) 

134 

(8.38) 

158 

(4.25) 

204 

(3.19) 

MiBps 99 182 359 478 





Proof of simplicity 
 

June 20: paper published online 

June 28: 18 third-party 

implementations  
 

C (Floodyberry, Boßlet, Neves); C# (Haynes) 

Cryptol (Lazar); Erlang, Javascript, PHP (Denis) 

Go (Chestnykh); Haskell (Hanquez) 

Java, Ruby (Boßlet); Lisp (Brown); Perl6 (Julin) 

 

 

 



Who is using SipHash? 

 

 

 Rust 

CRuby 

Soon: 

Perl 5 

Rubinius 



Take home message 
 

Hash-flooding DoS works by enforcing worst 

case in data structure operations through large 

multicollisions in the hash function 

 

Java and Rubies found vulnerable, due to their 

use of MurmurHash v2 or v3 

CityHash and Python’s hash are weak too… 

 

SipHash offers both security and performance 

 

 



 

SipHash paper, code, etc. available on 

https://131002.net/siphash  

 

Attacks paper coming soon…  


