
Hash-flooding DoS reloaded:

attacks and defenses

Jean-Philippe Aumasson,

Kudelski Security (NAGRA)

D. J. Bernstein,

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Martin Boßlet,

Ruby Core Team

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

Hash-flooding DoS reloaded:

attacks and defenses

Jean-Philippe Aumasson,

Kudelski Security (NAGRA)

D. J. Bernstein,

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Martin Boßlet,

Ruby Core Team

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

Hash-flooding DoS reloaded:

attacks and defenses

Jean-Philippe Aumasson,

Kudelski Security (NAGRA)

D. J. Bernstein,

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Martin Boßlet,

Ruby Core Team

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

Hash-flooding DoS reloaded:

attacks and defenses

Jean-Philippe Aumasson,

Kudelski Security (NAGRA)

D. J. Bernstein,

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Martin Boßlet,

Ruby Core Team

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Hash flooding begins?

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing the

hash table lookup with a linear

search. Depending on how many

entries we keep, this might make

scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

Review of classic hash tables

Choose ` 2 f1; 2; 4; 8; 16; : : :g.

Hash table: ` separate linked lists.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

e.g. strings one, two, : : : , ten;

H(s) = first byte of s; ` = 256:

...

e!eight

f!four!five
...

n!nine

o!one

p

q

r

s!six!seven

t!two!three!ten
...

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

H(s) = first byte of s

is not a good hash function!

Typical strings often start with t.

Very long t list; very slow.

In some applications, most strings

start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring

hash functions for hash tables

) good speed for typical strings.

What if the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Hashing malicious strings

Attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list;

linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

December 1999, Bernstein,

dnscache software (OpenDNS:

>41000000000000 DNS requests

from 50 million Internet users):

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

2011 (28C3), Klink–Wälde,

“Efficient denial of service attacks

on web application platforms”:

Java, JRuby, PHP 4, PHP 5,

Python 2, Python 3, Rubinius,

Ruby, Apache Geronimo, Apache

Tomcat, Oracle Glassfish, Jetty,

Plone, Rack, V8 Javascript

Engine.

oCERT advisory 2011–003.

Application response:

use secret key to randomize H.

: : : but is this secure?

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

2011 (28C3), Klink–Wälde,

“Efficient denial of service attacks

on web application platforms”:

Java, JRuby, PHP 4, PHP 5,

Python 2, Python 3, Rubinius,

Ruby, Apache Geronimo, Apache

Tomcat, Oracle Glassfish, Jetty,

Plone, Rack, V8 Javascript

Engine.

oCERT advisory 2011–003.

Application response:

use secret key to randomize H.

: : : but is this secure?

Bad solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Two reasons this is bad:

1. It’s very slow.

2. It doesn’t solve the problem.

H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

2011 (28C3), Klink–Wälde,

“Efficient denial of service attacks

on web application platforms”:

Java, JRuby, PHP 4, PHP 5,

Python 2, Python 3, Rubinius,

Ruby, Apache Geronimo, Apache

Tomcat, Oracle Glassfish, Jetty,

Plone, Rack, V8 Javascript

Engine.

oCERT advisory 2011–003.

Application response:

use secret key to randomize H.

: : : but is this secure?

2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

2011 (28C3), Klink–Wälde,

“Efficient denial of service attacks

on web application platforms”:

Java, JRuby, PHP 4, PHP 5,

Python 2, Python 3, Rubinius,

Ruby, Apache Geronimo, Apache

Tomcat, Oracle Glassfish, Jetty,

Plone, Rack, V8 Javascript

Engine.

oCERT advisory 2011–003.

Application response:

use secret key to randomize H.

: : : but is this secure?

“used in code by Google, Microsoft,

Yahoo, and many others”

“successor to MurmurHash2”

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) {

 uint64_t k = *(uint64_t*)data;

 k *= m;
 k ^= k >> 24;
 k *= m;

 h *= m;
 h ^= k;

 data += 8;
 len -= 8;

 }

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) {

 uint64_t k = *(uint64_t*)data;

 k *= m;
 k ^= k >> 24;
 k *= m;

 h *= m;
 h ^= k;

 data += 8;
 len -= 8;

 }

 …

 /* finalization */

 switch (len) {

 case 7: h ^= data[6] << 48;
 case 6: h ^= data[5] << 40;
 case 5: h ^= data[4] << 32;
 case 4: h ^= data[3] << 24;
 case 3: h ^= data[2] << 16;
 case 2: h ^= data[1] << 8;
 case 1: h ^= data[0];
 h *= m;

 };

 …

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) { /* first block */

 uint64_t k = *(uint64_t*)data;

 k *= m; /* inject difference D1 */
 k ^= k >> 24;
 k *= m;

 h *= m;
 h ^= k;

 data += 8;
 len -= 8;

 }

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) { /* first block */

 uint64_t k = *(uint64_t*)data;

 k *= m; /* inject difference D1 */
 k ^= k >> 24;
 k *= m; /* diff in k: 0x8000000000000000 */

 h *= m;
 h ^= k;

 data += 8;
 len -= 8;

 }

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) { /* first block */

 uint64_t k = *(uint64_t*)data;

 k *= m; /* inject difference D1 */
 k ^= k >> 24;
 k *= m; /* diff in k: 0x8000000000000000 */

 h *= m;
 h ^= k; /* diff in h: 0x8000000000000000 */

 data += 8;
 len -= 8;

 }

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) { /* second block */

 uint64_t k = *(uint64_t*)data;

 k *= m; /* inject difference D2 */
 k ^= k >> 24;
 k *= m; /* diff in k: 0x8000000000000000 */

 h *= m;
 h ^= k;

 data += 8;
 len -= 8;

 }

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) { /* second block */

 uint64_t k = *(uint64_t*)data;

 k *= m; /* inject difference D2 */
 k ^= k >> 24;
 k *= m; /* diff in k: 0x8000000000000000 */

 h *= m; /* diff in h still: 0x8000000000000000 */
 h ^= k;

 data += 8;
 len -= 8;

 }

 const uint64_t m = (0xc6a4a793 << 32) | 0x5bd1e995;
 uint64_t h = seed ^ len;

 while (len >= 8) { /* second block */

 uint64_t k = *(uint64_t*)data;

 k *= m; /* inject difference D2 */
 k ^= k >> 24;
 k *= m; /* diff in k: 0x8000000000000000 */

 h *= m; /* diff in h still: 0x8000000000000000 */
 h ^= k; /* COLLISION !!!
 (0x80... ^ 0x80... = 0) */
 data += 8;
 len -= 8;

 }

M1 M2

collision

M3 M4

collision

M5 M6

collision

http://crypto.junod.info/2012/12/13/hash-dos-and-btrfs/

 def parse_nested_query(qs, d = nil)

 params = KeySpaceConstrainedParams.new

 (qs || '').split(d ? /[#{d}] */n : DEFAULT_SEP).each do |p|

 k, v = p.split('=', 2).map { |s| unescape(s) }
 normalize_params(params, k, v)

 end

 return params.to_params_hash

 end

 def unescape(s, encoding = Encoding::UTF_8)

 URI.decode_www_form_component(s, encoding)

 end

 def self.decode_www_form_component(str, enc=Encoding::UTF_8)

 raise ArgumentError, "invalid %-encoding (#{str})"
 unless /\A[^%]*(?:%\h\h[^%]*)*\z/ =~ str

 str.gsub(/\+|%\h\h/, TBLDECWWWCOMP_).force_encoding(enc)

 end

 def parse_nested_query(qs, d = nil)

 params = KeySpaceConstrainedParams.new

 (qs || '').split(d ? /[#{d}] */n : DEFAULT_SEP).each do |p|

 k, v = p.split('=', 2).map { |s| unescape(s) }
 normalize_params(params, k, v)

 end

 return params.to_params_hash

 end

 def normalize_params(params, name, v = nil)

 name =~ %r(\A[\[\]]*([^\[\]]+)\]*)

 k = $1 || ''

 …
 end

 def parse_nested_query(qs, d = nil)

 params = KeySpaceConstrainedParams.new

 (qs || '').split(d ? /[#{d}] */n : DEFAULT_SEP).each do |p|

 k, v = p.split('=', 2).map { |s| unescape(s) }
 normalize_params(params, k, v)

 end

 return params.to_params_hash

 end

 class KeySpaceConstrainedParams

 def []=(key, value)

 @size += key.size if key && !@params.key?(key)

 raise RangeError, 'exceeded available parameter key space‘
 if @size > @limit

 @params[key] = value

 end

 end

Fix it

at the

root

TM

public String(byte bytes[], int offset, int length,
 Charset charset) {
 …

 char[] v = StringCoding.decode(charset, bytes, offset, length);

 …

}

problem, byte[] ?

 public String(char value[]) {

 int size = value.length;
 this.offset = 0;
 this.count = size;
 this.value = Arrays.copyOf(value, size);

 }

http://www.ruby-lang.org/en/news/2012/11/09/ruby19-hashdos-cve-2012-5371/

http://jruby.org/2012/12/03/jruby-1-7-1.html

https://github.com/rubinius/rubinius/commit/a9a40fc6a1256bcf6382631b710430105c5dd868

Don’t use MurmurHash

CityHash?

“Inside Google, where CityHash

was developed starting in 2010,

we use variants of CityHash64()

mainly in hash tables such as
hash_map<string, int>.”
https://code.google.com/p/cityhash/

CityHash64(0Y|L&:$;+[&HASH!, 16)
CityHash64(JkMR_ 0\7](HASH!, 16)
CityHash64(<jiI7g;s,`(HASH!, 16)
CityHash64(e: yn"sg^a(HASH!, 16)
CityHash64(dt6PG8}?oz(HASH!, 16)
CityHash64(8c-lkD%_Eo)HASH!, 16)
CityHash64(TdIx>DnK-1*HASH!, 16)
CityHash64(iM:9l=S"|e*HASH!, 16)
CityHash64(Z,r_|5xM0l*HASH!, 16)
CityHash64(.QH~S!9P(p*HASH!, 16)
CityHash64({pF*"wkd[F+HASH!, 16)
CityHash64(i< @)`oy+?,HASH!, 16)
CityHash64(BU9[85WWp/ HASH!, 16)
CityHash64(8{YDLn;d.2 HASH!, 16)
CityHash64(d+nkK&t?yr HASH!, 16)
CityHash64({A.#v5i]V{ HASH!, 16)
CityHash64(FBC=/\hJeA!HASH!, 16)
CityHash64(03=K1.-H!HASH!, 16)

= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f
= b553de6f34e878f

CityHash is weaker than MurmurHash

Python’s hash()?

$ python -V

Python 2.7.3

$ time -p python -R poc.py

64 candidate solutions

Verified solutions for

_Py_HashSecret:

145cc9aade7d2453 275daf6070a41b99

945cc9aade7d2453 a75daf6070a41b99

real 0.32

user 0.17

sys 0.02

Python 2.x and 3.x
• Randomization of hash() optional (-R)

• Instantaneous key recovery

• Multicollisions with TMTO

.NET’s Marvin32?

Something designed to be secure?

SipHash: a fast short-input PRF

New keyed hash to fix hash-flooding:

• Rigorous security requirements and analysis

• Speed competitive with that of weak hashes

• Can serve as MAC or PRF

Peer-reviewed research paper (A., Bernstein).

published at DIAC 2012, INDOCRYPT 2012

SipHash initialization

256-bit state v0 v1 v2 v3

128-bit key k0 k1

v0 = k0 ⊕ 0x736f6d6570736575

v1 = k1 ⊕ 0x646f72616e646f6d

v2 = k0 ⊕ 0x6c7967656e657261

v3 = k1 ⊕ 0x7465646279746573

SipHash initialization

256-bit state v0 v1 v2 v3

128-bit key k0 k1

v0 = k0 ⊕ “somepseu”

v1 = k1 ⊕ “dorandom”

v2 = k0 ⊕ “lygenera”

v3 = k1 ⊕ “tedbytes”

SipHash compression

Message parsed as 64-bit words m0, m1, …

v3 ⊕= m0

c iterations of SipRound

v0 ⊕= m0

SipHash compression

Message parsed as 64-bit words m0, m1, …

v3 ⊕= m1

c iterations of SipRound

v0 ⊕= m1

SipHash compression

Message parsed as 64-bit words m0, m1, …

v3 ⊕= m2

c iterations of SipRound

v0 ⊕= m2

SipHash compression

Message parsed as 64-bit words m0, m1, …

Etc.

SipRound

SipHash finalization

v2 ⊕= 255

d iterations of SipRound

Return v0 ⊕ v1 ⊕ v2 ⊕ v3

SipHash-2-4 hashing 15 bytes

Family SipHash-c-d

Fast proposal: SipHash-2-4

Conservative proposal: SipHash-4-8

Weaker versions for cryptanalysis:

SipHash-1-0, SipHash-2-0, etc.

SipHash-1-1, SipHash-2-1, etc.

Etc.

Security claims

≈ 2128 key recovery

≈ 2192 state recovery

≈ 2128 internal-collision forgery

≈ 2s forgery with probab. 2s-64

Fast diffusion of differences, thanks

to optimized rotation counts

Combination of ADD and XOR ensures a high

nonlinearity (e.g. against cube attacks)

How fast is SipHash-2-4?

On an old AMD Athlon II Neo (@1.6GHz)

Long messages: 1.44 cycles/byte (1 GiBps)

Bytes 8 16 32 64

Cycles
(per byte)

123

(15.38)

134

(8.38)

158

(4.25)

204

(3.19)

MiBps 99 182 359 478

Proof of simplicity

June 20: paper published online

June 28: 18 third-party

implementations

C (Floodyberry, Boßlet, Neves); C# (Haynes)

Cryptol (Lazar); Erlang, Javascript, PHP (Denis)

Go (Chestnykh); Haskell (Hanquez)

Java, Ruby (Boßlet); Lisp (Brown); Perl6 (Julin)

Who is using SipHash?

 Rust

CRuby

Soon:

Perl 5

Rubinius

Take home message

Hash-flooding DoS works by enforcing worst

case in data structure operations through large

multicollisions in the hash function

Java and Rubies found vulnerable, due to their

use of MurmurHash v2 or v3

CityHash and Python’s hash are weak too…

SipHash offers both security and performance

SipHash paper, code, etc. available on

https://131002.net/siphash

Attacks paper coming soon…

