Hash-flooding DoS reloaded: Hash flooding begins?

attacks and defenses July 1998 article

Jean-Philippe Aumasson, “Designing and attacking
Kudelski Security (NAGRA) port scan detection tools”
by Solar Designer (Alexander

D. J. Bernstein,
University of lllinois at Chicago &

Peslyak) in Phrack Magazine:

Technische Universiteit Eindhoven “In scanlogd, I'm using a hash

Martin BoBlet. table to lookup source addresses.

Ruby Core Team This works very well for the

typical case ... average lookup
time is better than that of a
binary search. . ..

oding DoS reloaded:
and defenses

ilippe Aumasson,
Security (NAGRA)

rnstein,
ty of lllinois at Chicago &
he Universiteit Eindhoven

3oBlet,
re Team

Hash flooding begins?

July 1998 artic

“Designing anc

e
attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd,

table to lookup source addresses.

I'm using a hash

This works very well for the

typical case . ..

average lookup

time Is better than that of a

binary search. .

Howevel
choose |
likely sp
collision
hash tat
search.

entries v
scanlog
new pac
solved ti
the num
discardir
the sam

IImit Is |

y reloaded:
5es

1aSSOon,
(NAGRA)

is at Chicago &
siteit Eindhoven

Hash flooding begins?

July 1998 artic

“Designing anc

e
attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd,

table to lookup source addresses.

I'm using a hash

This works very well for the

typical case . ..

average lookup

time Is better than that of a

binary search. .

However, an attac
choose her addres
likely spoofed) to
collisions, effective
hash table lookup
search. Depending
entries we keep, ti
scanlogd not be
new packets up in
solved this probler
the number of ha:s
discarding the old.
the same hash val
[imit is reached.

g0 &
hoven

Hash flooding begins?

July 1998 artic

“Designing anc

e
attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd,

table to lookup source addresses.

I'm using a hash

T his works very well for the

typical case . ..

average lookup

time Is better than that of a

binary search. .

However, an attacker can
choose her addresses (most
likely spoofed) to cause has
collisions, effectively replacii
hash table lookup with a lin
search. Depending on how |
entries we keep, this might .
scanlogd not be able to pi
new packets up in time. . ..
solved this problem by limiti
the number of hash collisior,
discarding the oldest entry v
the same hash value when t
limit is reached.

Hash flooding begins?

July 1998 artic

“Designing anc

e
attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd,

table to lookup source addresses.

I'm using a hash

This works very well for the

typical case . ..

average lookup

time Is better than that of a

binary search. .

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash
collisions, effectively replacing the
hash table lookup with a linear
search. Depending on how many
entries we keep, this might make
scanlogd not be able to pick
new packets up in time. ... |'ve
solved this problem by limiting
the number of hash collisions, and
discarding the oldest entry with
the same hash value when the
limit is reached.

oding begins?

8 article

ng and attacking
n detection tools”
Designer (Alexander

in Phrack Magazine;:

11ogd, I'm using a hash
lookup source addresses.
rks very well for the

ase ... average lookup
etter than that of a
carch. .. .

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash
collisions, effectively replacing the
hash table lookup with a linear
search. Depending on how many
entries we keep, this might make
scanlogd not be able to pick
new packets up in time. ... l've
solved this problem by Iimiting
the number of hash collisions, and
discarding the oldest entry with
the same hash value when the
limit is reached.

This is ¢
(remem
all scans
not be &
other at
worth m
Issues al
operatin
example
used the
connect
There 're
which
dangero

more rec

Ins?

tacking
n tools”
(Alexander

« Magazine:

1 using a hash

urce addresses.

ell for the
rerage lookup
1 that of a

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash
collisions, effectively replacing the
hash table lookup with a linear
search. Depending on how many
entries we keep, this might make
scanlogd not be able to pick
new packets up in time. ... |'ve
solved this problem by limiting
the number of hash collisions, and
discarding the oldest entry with
the same hash value when the
limit is reached.

This Is acceptable
(remember, we ca
all scans anyway),
not be acceptable
other attacks. . ..

worth mentioning
Issues also apply t
operating system
example, hash tab
used there for lool
connections, lister
There're usually o
which make these
dangerous though
more research mig

1ash

=55€S.

kup

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash
collisions, effectively replacing the
hash table lookup with a linear
search. Depending on how many
entries we keep, this might make
scanlogd not be able to pick
new packets up in time. ... l've
solved this problem by limiting
the number of hash collisions, and
discarding the oldest entry with
the same hash value when the
limit is reached.

This is acceptable for port s
(remember, we can’t detect
all scans anyway), but migh
not be acceptable for detect
other attacks. ... It is prob.
worth mentioning that simil.
Issues also apply to things Ii
operating system kernels. F
example, hash tables are wic
used there for looking up ac
connections, listening ports,
There're usually other limits
which make these not really
dangerous though, but

more research might be nee

However, an attacker can

choose her addresses (most

likely spoofed) to cause hash
collisions, effectively replacing the
hash table lookup with a linear
search. Depending on how many
entries we keep, this might make
scanlogd not be able to pick
new packets up in time. ... |'ve
solved this problem by limiting
the number of hash collisions, and
discarding the oldest entry with
the same hash value when the
limit is reached.

This is acceptable for port scans
(remember, we can’t detect

all scans anyway), but might
not be acceptable for detecting
other attacks. ... It is probably
worth mentioning that similar
Issues also apply to things like
operating system kernels. For
example, hash tables are widely
used there for looking up active
connections, listening ports, etc.
There're usually other Iimits
which make these not really
dangerous though, but

more research might be needed.”

- an attacker can

1er addresses (most
oofed) to cause hash

s, effectively replacing the
le lookup with a linear
Depending on how many
ve keep, this might make
rd not be able to pick
kets up in time. ... l've
his problem by limiting
ber of hash collisions, and
1g the oldest entry with

e hash value when the
eached.

This is acceptable for port scans
(remember, we can’t detect

all scans anyway), but might
not be acceptable for detecting
other attacks. ... It is probably
worth mentioning that similar
Issues also apply to things like
operating system kernels. For
example, hash tables are widely
used there for looking up active
connections, listening ports, etc.
There're usually other limits
which make these not really
dangerous though, but

more research might be needed.”

Review ¢

Choose .

Hash tal
Store st
where 2

With n
expect A
In each |
Choose .
expect v
SO very |

(What i
Rehash:

ker can

ses (most

cause hash

ly replacing the
with a linear

r on how many

s might make
able to pick
time. ... l've
n by limiting

h collisions, and
ost entry with
ue when the

This is acceptable for port scans
(remember, we can’t detect

all scans anyway), but might
not be acceptable for detecting
other attacks. ... It is probably
worth mentioning that similar
Issues also apply to things like
operating system kernels. For
example, hash tables are widely
used there for looking up active
connections, listening ports, etc.
There're usually other Iimits
which make these not really
dangerous though, but

more research might be needed.”

Review of classic |

Choose £ € {1, 2,

Hash table: £ sep:
Store string s in i
where 1 = H(s) m

With n entries in
expect ~ n /L entr
in each linked list.
Choose £ ~ n:

expect very short
so very fast list of

(What if n becom
Rehash: replace ¢

1g the
ear
nany
make

['ve
ng
s, and
vith
he

This is acceptable for port scans
(remember, we can’t detect

all scans anyway), but might
not be acceptable for detecting
other attacks. ... It is probably
worth mentioning that similar
Issues also apply to things like
operating system kernels. For
example, hash tables are widely
used there for looking up active
connections, listening ports, etc.
There're usually other limits
which make these not really
dangerous though, but

more research might be needed.”

Review of classic hash table:

Choose £ € {1,2,4,8,16,..

Hash table: £ separate linke

Store string s in list #1
where 1 = H(s) mod £.

With n entries In table,
expect ~ n/{ entries

in each linked list.

Choose £ ~ n:

expect very short linked lists
so very fast list operations.

(What if n becomes too big
Rehash: replace £ by 2£.)

This is acceptable for port scans
(remember, we can’t detect

all scans anyway), but might
not be acceptable for detecting
other attacks. ... It is probably
worth mentioning that similar
Issues also apply to things like
operating system kernels. For
example, hash tables are widely
used there for looking up active
connections, listening ports, etc.
There're usually other Iimits
which make these not really
dangerous though, but

more research might be needed.”

Review of classic hash tables

Choose £ € {1,2,4,8,16,...}.

Hash table: £ separate linked lists.

Store string s in list #1
where 1 = H(s) mod .

With n entries in table,
expect ~ n/{ entries

in each linked list.

Choose £ ~ n:

expect very short linked lists,
so very fast list operations.

(What if n becomes too big?
Rehash: replace £ by 2£.)

ycceptable for port scans
her, we can't detect

- anyway), but might
cceptable for detecting
tacks. ... It is probably
entioning that similar
so apply to things like
g system kernels. For

, hash tables are widely
re for looking up active
ons, listening ports, etc.
' usually other limits
ake these not really

s though, but

search might be needed.”

Review of classic hash tables

Choose £ € {1,2,4,8,16,...}.

Hash table: £ separate linked lists.

Store string s in list #1
where 1 = H(s) mod £.

With n entries In table,
expect ~ n/{ entries

in each linked list.

Choose £ ~ n:

expect very short linked lists,
so very fast list operations.

(What if n becomes too big?
Rehash: replace £ by 2£.)

e.g. stri
H(s) =

e—elgk
f—>fouz

n—nine

oO—one

P

9
r

S—S1X-
T—Two-

for port scans
n't detect
but might
for detecting
It is probably
that similar
o things like
kernels. For
les are widely
<ing up active
ing ports, etc.
ther limits
not really
but

ht be needed.”

Review of classic hash tables

Choose £ € {1,2,4,8,16,...}.

Hash table: £ separate linked lists.

Store string s in list #1
where 1 = H(s) mod .

With n entries In table,
expect ~ n/{ entries

in each linked list.

Choose £ ~ n:

expect very short linked lists,
so very fast list operations.

(What if n becomes too big?
Rehash: replace £ by 2£.)

e.g. strings one, t
H(s) = first byte «

e—elght
f—>four—five

n—nine

oO—one

1%

9
r

S—Sl1X—seven
t—two—three—

cans Review of classic hash tables e.g. strings one, two, ..., t

Choose £ € {1,2,4,8,16,...}. H(s) = first byte of s; £ =2

L

ing Hash table: £ separate linked lists.

ably Store string s in list #1 e—eight

ar where 1 = H(s) mod £. f—+four—five
ke With n entries in table,

Or n—nine

expect ~ n /{ entries

ely in each linked list. O—one

tive Choose £ ~ n: P
etc. expect very short linked lists, 4
. . r
so very fast list operations.
S—sSl1lX—seven

(What if n becomes too big? t stuo—three—sten
Jed.” Rehash: replace £ by 2£.) -

Review of classic hash tables e.g. strings one, two, ..., ten;
H(s) = first byte of s; £ = 256:

Choose £ € {1,2,4,8,16,...}.

Hash table: £ separate linked lists.

Store string s in list #3 e—elght
where ¢ = H(s) mod £. f—=four—five
With n entries In table,
. n—nine

expect ~ n/{ entries
. . . o—one
in each linked list.
Choose £ ~ n: P
expect very short linked lists, 4

. . r
so very fast list operations.

sS—sSl1X—rseven

(What if n becomes too big? tStwo—sthree—sten
Rehash: replace £ by 2£.) '

of classic hash tables e.g. strings one, two, ..., ten; H(s) =
)€ {1,2,4.8.16, .} H(s) = first byte of s; £ = 256: IS not a
sle: £ separate linked lists. Typical -
ing s in list #1 e—elght Very lon
— H(s) mod £. f>four—five In some
entries In table, | start wit
s n/{ entries nrnine
inked list. oTrone

SE (% P
ery short linked lists, 4
ast list operations. t |

s—six—seven

~n becomes too big? t—two—three—ten

replace £ by 2¢.) '

1ash tables e.g. strings one, two, ..., ten; H(s) = first byte
H(s) = first byte of s; £ = 256: is not a good hast

1,8,16,...}.

yrate linked lists. Typical strings oft

Very long t list; v

st #1 e—eight
od £. f 3>four—five In some applicatio
table . start with the sam
- | n—nine
1es
o—one
P
inked lists, 9
: T
erations.
S—Sl1X—seven

es too big? t—two—three—ten
by 2£.) -

AV D

1

d lists.

e.g. strings one, two, ..., ten;
H(s) = first byte of s; £ = 256:

e—elght
f—>four—five

n—nine

oO—one

1%

9
r

S—Sl1X—seven
t—two—three—ten

H(s) = first byte of s
is not a good hash function!

Typical strings often start w
Very long t list; very slow.

In some applications, most
start with the same letter.

e.g. strings one, two, ..., ten;
H(s) = first byte of s; £ = 256:

e—elght
f—>four—five

n—nine

oO—one

1%

9
r

S—Sl1X—seven
t—two—three—ten

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

e.g. strings one, two, ..., ten;
H(s) = first byte of s; £ = 256:

e—elght
f—>four—five

n—nine

oO—one

1%

9
r

S—Sl1X—seven
t—two—three—ten

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions
that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

e.g. strings one, two, ..., ten;
H(s) = first byte of s; £ = 256:

e—elght
f—>four—five

n—nine

oO—one

1%

9
r

S—Sl1X—seven
t—two—three—ten

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions
that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

ngs one, two, ..., ten,;
first byte of s; £ = 256:

1t
~—five

—»seven
—“three—ten

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

Hashing

Attacker
S1,...,¢
o= H,

Then all
In the sc
linked lis

WO,

of s

-ten

/4

., ten,

— 256:

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions
that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

Hashing malicious

Attacker provides
3]_, Y) W|th H'
.- = H(sp) mod.

Then all strings ar
In the same linked
linked list become:

en;

50:

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions

that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

Hashing malicious strings

Attacker provides strings
$1,...,8n with H(s1) mod
.- = H(sy) mod £.

Then all strings are stored
in the same linked list;
linked list becomes very slov

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions
that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

Hashing malicious strings

Attacker provides strings
§1,---,8n with H(s1) mod £ =
.- = H(sy) mod .

Then all strings are stored
in the same linked list;
linked list becomes very slow.

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions
that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

Hashing malicious strings

Attacker provides strings
§1,---,8n with H(s1) mod £ =
.- = H(sy) mod .

Then all strings are stored
in the same linked list;
linked list becomes very slow.

Solution: Replace linked list
by a safe tree structure,
at least if list is big.

H(s) = first byte of s
is not a good hash function!

Typical strings often start with t.
Very long t list; very slow.

In some applications, most strings
start with the same letter.

So we use fast hash functions
that look at the whole string s.

60 years of programmers exploring
hash functions for hash tables
= good speed for typical strings.

What if the strings aren't typical?

Hashing malicious strings

Attacker provides strings
§1,---,8n with H(s1) mod £ =
.- = H(sy) mod .

Then all strings are stored
in the same linked list;
linked list becomes very slow.

Solution: Replace linked list
by a safe tree structure,
at least if list is big.

But implementors are unhappy:
this solution throws away the
simplicity of hash tables.

first byte of s

good hash function!

strings often start with t.
g t list; very slow.

applications, most strings
h the same letter.

se fast hash functions

k at the whole string s.

of programmers exploring
ctions for hash tables
speed for typical strings.

the strings aren’t typical?

Hashing malicious strings

Attacker provides strings

§1,...,8n with H(s1) mod £ =

.- = H(sy) mod £.

Then all strings are stored
in the same linked list;
linked list becomes very slow.

Solution: Replace linked list
by a safe tree structure,
at least if list is big.

But implementors are unhappy:

this solution throws away the
simplicity of hash tables.

Decemb

dnscaclt

>41000(
from 50

if (+
/*
]

Discardi
trivially
It attack

But wha
general-
language
Can't th

of s
\ function!

en start with t.
ery slow.

ns, most strings
e letter.

h functions
hole string s.

mmers exploring
hash tables
typical strings.

s aren't typical?

Hashing malicious strings

Attacker provides strings

§1,--.,8n with H(s1) mod £ =

.- = H(sy) mod .

Then all strings are stored
iIn the same linked list;

linked list becomes very slow.

Solution: Replace linked list
by a safe tree structure,
at least if list is big.

But implementors are unhappy:

this solution throws away the
simplicity of hash tables.

December 1999, E
dnscache softwar
>4100000000000C
from 50 million In

if (++loop > 1
/* to protec
hash floo

Discarding cache
trivially maintains
if attacker floods |

But what about h
general-purpose pi
languages and libr
Can't throw entrie

ith t.

strings

1S

loring
oS
rings.

pical?

Hashing malicious strings

Attacker provides strings
§1,...,8n with H(s1) mod £ =
.- = H(sy) mod £.

Then all strings are stored
in the same linked list;
linked list becomes very slow.

Solution: Replace linked list
by a safe tree structure,
at least if list is big.

But implementors are unhappy:
this solution throws away the
simplicity of hash tables.

December 1999, Bernstein,
dnscache software (OpenD

>41000000000000 DNS req
from 50 million Internet use

if (++loop > 100) retur
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performar
if attacker tloods hash table

But what about hash tables
general-purpose programmir
languages and libraries?
Can't throw entries away!

Hashing malicious strings

Attacker provides strings

§1,---,8n with H(s1) mod £ =

.- = H(sy) mod .

Then all strings are stored
iIn the same linked list;
linked list becomes very slow.

Solution: Replace linked list
by a safe tree structure,
at least if list is big.

But implementors are unhappy:

this solution throws away the
simplicity of hash tables.

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

‘malicious strings

- provides strings

n, With H(s1) mod £ =

(sy,) mod £.

strings are stored
ime linked list;
st becomes very slow.

. Replace linked list
2 tree structure,
if list Is big.

lementors are unhappy:

tion throws away the
y of hash tables.

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

Bad solt
Use SH/
SHA-3 i

strings

strings

(31) mod { =

A

e stored
list;
s very slow.

linked list
cture,

g.

are unhappy:

/s away the
tables.

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

Bad solution:

Use SHA-3 for H.
SHA-3 is collision-

S

pY:

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

Bad solution:

Use SHA-3 -

for H.

SHA-3 is co

lision-resistant!

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

Two reasons this is bad:
1. It's very slow.
2. It doesn't solve the problem.

December 1999, Bernstein,
dnscache software (OpenDNS:

>41000000000000 DNS requests
from 50 million Internet users):

if (++loop > 100) return O;
/* to protect against

hash flooding */

Discarding cache entries
trivially maintains performance
if attacker floods hash table.

But what about hash tables in
general-purpose programming
languages and libraries?

Can't throw entries away!

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

Two reasons this is bad:
1. It's very slow.
2. It doesn't solve the problem.

H(s) mod /
Is not collision-resistant.

{is small: eg., £ =2%0
No matter how strong H s,
attacker can easily compute

H(s) mod 22V for many s
to find multicollisions.

er 1999, Bernstein,
1e software (OpenDNS:

J00000000 DNS requests
million Internet users):

+loop > 100) return O;
to protect against

nash flooding */

ng cache entries
maintains performance
er floods hash table.

t about hash tables In
DUrpose programming
s and libraries?

row entries away!

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

Two reasons this is bad:
1. It's very slow.

2. It doesn't solve the problem.

H(s) mod /£
Is not collision-resistant.

{is small: eg., £ =2%0

No matter how strong H s,
attacker can easily compute
H(s) mod 22° for many s

to find multicollisions.

2003 US
Symposi
“Denial

algorithr

“We pre
low-ban
attacks

hashes t

the hash
degener:

Attack e
Perl pro
Squid w

ernstein,

e (OpenDNS:

) DNS requests
ternet users):

00) return O;
t against

ding */

ntries
performance
1ash table.

ash tables In
ogramming
aries’

s away!

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

Two reasons this is bad:
1. It's very slow.

2. It doesn't solve the problem.

H(s) mod /
Is not collision-resistant.

{is small: eg., £ =2%0
No matter how strong H s,
attacker can easily compute

H(s) mod 22V for many s
to find multicollisions.

2003 USENIX Sec
Symposium, Crost
“Denial of service
algorithmic compl

“We present a ney
low-bandwidth dei
attacks ... if eact
hashes to the sam
the hash table will
degenerate to a lir

Attack examples:
Perl programming
Squid web cache,

NS:
uests
rs):

n 0;

1CE

T

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

Two reasons this Is bad:
1. It's very slow.
2. It doesn't solve the problem.

H(s) mod /£
Is not collision-resistant.

{is small: eg., £ =2%0

No matter how strong H s,
attacker can easily compute
H(s) mod 22° for many s

to find multicollisions.

2003 USENIX Security
Symposium, Crosby—Wallacl
“Denial of service via
algorithmic complexity attac

“We present a new class of
low-bandwidth denial of sen

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

Bad solution:
Use SHA-3 for H.
SHA-3 is collision-resistant!

Two reasons this is bad:
1. It's very slow.

2. It doesn't solve the problem.

H(s) mod /
Is not collision-resistant.

{is small: eg., £ =2%0
No matter how strong H s,
attacker can easily compute

H(s) mod 22V for many s
to find multicollisions.

2003 USENIX Security
Symposium, Crosby—Wallach,
“Denial of service via
algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

ition:
\-3 for H.
s collision-resistant!

sons this is bad:
ery slow.
asn't solve the problem.

d £

yllision-resistant.

I: eg., £ =2

er how strong H s,
can easily compute
d 220 for many s
nulticollisions.

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28
“Efficier

on web .

Java, JF
Python
Ruby, A
Tomcat,

Plone, R
Engine.

oCERT

Applicat
USse secr
. but

resistant!

s bad:

- the problem.

Istant.
=220,
ong H s,
- compute

many s
ons.

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28C3), Klin
“Efficient denial o
on web applicatior

Java, JRuby, PHP
Python 2, Python
Ruby, Apache Ger
Tomcat, Oracle G

Plone, Rack, V8 J
Engine.

oCERT advisory 2

Application respor
use secret key to |
... but Is this sec

cm.

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28C3), Klink—Walde,
“Efficient denial of service a
on web application platform

Java, JRuby, PHP 4, PHP &
Python 2, Python 3, Rubini
Ruby, Apache Geronimo, Ar
Tomcat, Oracle Glassfish, Je
Plone, Rack, V8 Javascript
Engine.

oCERT advisory 2011-003.

Application response:
use secret key to randomize
... but is this secure?

2003 USENIX Security

Symposium, Crosby—Wallach,
“Denial of service via

algorithmic complexity attacks":

“We present a new class of
low-bandwidth denial of service

attacks ... if each element
hashes to the same bucket,
the hash table will also

degenerate to a linked list.”

Attack examples:
Perl programming language,
Squid web cache, etc.

2011 (28C3), Klink—Walde,
“Efficient denial of service attacks
on web application platforms’:

Java, JRuby, PHP 4, PHP 5,
Python 2, Python 3, Rubinius,
Ruby, Apache Geronimo, Apache
Tomcat, Oracle Glassfish, Jetty,
Plone, Rack, V8 Javascript
Engine.

oCERT advisory 2011-003.

Application response:
use secret key to randomize H.
... but is this secure?

I
k

L
i 1 (HL

)

MurmurHash?2

“used in code by Google, Microsofft,

Yahoo, and many others”

CRuby, JRuby, Redis

MurmurHash3

“successor to MurmurHash2”

Oracle & OpenJDK, Rubinius

1. Theory

Safety &
| Main Arming Fibre Optic
Electronics Flight Motor Battery Warhead Device Bobbin

CCD/IIR Precursor Gyro Folded Servo Conirol Launch
Seeker Warhead Wings Surfaces Motor

MurmurHash2, 64 bit CRuby

const uint64_t m = (0xc6bad4a793 << 32) | 0x5bd1e995
uinté4 t h = seed N len;

while (len >= 8) {

uint64 t k = *(uint64 t*)data;

>0

m,
k >> 24;

AN AN A
>

>+

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uint64 t h = seed N len;

while (len >= 8) {

uint64 t k = *(uint64 t*)data;

>0

m,
k >> 24;

AN AN A
>

>+

block processing independent of seed

/* finalization */

switch (len) {

case
case
case
case
case
case
case
h *=

S =N WPk~ UIO J

D D D B B B el

O O O O O o o

atal
atal
atal
atal
atal
atal
atal

O -=-DNWDKDUIO

<<
<<
<<
<<
<<
<<

48 :
40 ;
32;
24
16;

8-byte-aligned data = skip finalization

differential cryptanalysis

Introduce a difference
INn the state h via Input k

cancel 1t again with
a second well-chosen difference

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* first block */

uint64 t k = *(uint64 t*)data;

K *= m; /* inject difference D1 */
K A=k >> 24;

K *= m;

h *= m;

h A= k,

data += 8;

len -= 8;

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* first block */

uint64 t k = *(uint64 t*)data;

>0

K
<

/* inject difference D1 */

- e

s X 3
V
V
No
AN

>

A\
*

/* diff in k: 0x8000000000000000 */

- e

> I
> X%
i

AN 3

data += 8;
8,

-
(D
>
|
[l

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* first block */

uint64 t k = *(uint64 t*)data;

>0

K *= m; /* inject difference D1 */

K A=k >> 24;

K *=m; /* diff in k: 0x8000000000000000 */
h *= m;

h A= k; /* diff in h: 0x8000000000000000 */
data += 8§;

len -= 8;

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* second block */

uint64 t k = *(uint64 t*)data;

>0

K
<

/* inject difference D2 */

- e

s X 3
V
V
No
AN

>

A\
*

/* diff in k: 0x8000000000000000 */

- e

> I
> X%
i

AN 3

data += 8;
8,

-
(D
>
|
[l

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* second block */

uint64 t k = *(uint64 t*)data;

>0

K *= m; /* inject difference D2 */

kK A=k >> 24:

K *=m; /* diff in k: 0x8000000000000000 */

h *= m; /* diff in h still: O0x8000000000000000 */
h A= k;

data += 8§;

len -= 8;

const uint64_t m = (0xc6ad4a793 << 32) | 0x5bd1e995;
uinté4 t h = seed N len;

while (len >= 8) { /* second block */

uint64 t k = *(uint64 t*)data;

>0

K *= m; /* inject difference D2 */
kK A=k >> 24:
K *=m; /* diff in k: 0x8000000000000000 */
h *= m; /* diff in h still: O0x8000000000000000 */
h A= k; /* COLLISION !!]
(0x80... A 0x80... = 0) */
data += 8§;
len -= 8;

M1 M2 M3 M4 M5 M6

\ \ \4 W/
- > - > -

collision collision collision

chain collisions = multicollisions
1on bytes = 2" colliding inputs

multicollision works for any seed

=) “universal’ multicollisions

same principle
slightly more complicated for
MurmurHash3

conseqgquence

systems using MurmurHash2/3
remain
vulnerable to hash-flooding

2. Practice

Breaking Murmur:

we've got the recipe —

now all we need is the (hash) cake

where are hashes used?

parser symbol tables
method lookup tables
attributes / instance variables
Ip addresses
transaction i1ds
database indexing
session 1ds
http headers
Jjson representation
url-encoded post form data
deduplication (HashSet)
A* search algorithm
dictionaries

=) where aren't they used?

just recently

hash-DoS in btrfs file system (!)

http://crypto.junod.info/2012/12/13/hash-dos-and-btrfs/

can't we use something different?

we could

but amortized constant time
IS Just too sexy

possible real-life attacks

need a high-profile target

web application

example #1

rails

first

attacking MurmurHash in ruby

apply the recipe

le demo

should work with rails

out of the box, no?

unfortunately, no

def parse_nested_query(gs, d = nil)
params = KeySpaceConstrainedParams.new
(qgs || "').split(d ? /[#{d}] */n . DEFAULT_SEP).each do |p]|

k, v = p.split('=", 2).map { |s| unescape(s) }
normalize_params(params, Kk, V)

end
return params.to_params_hash

end

def unescape(s, encoding = Encoding::UTF_8)
URI.decode_www_form_component(s, encoding)

end

def self.decode_www_form_component(str, enc=Encoding::UTF_8)

raise ArgumentError, "invalid %-encoding (#{str})"
unless /\A["%]*(?:%\h\h[A%]*)*\z/ =~ str

str.gsub(/\+|%\h\h/, TBLDECWWWCOMP_) .force_encoding(enc)

end

NAL%]*(?:%\h\h1"%]*)*\z/

227

catches invalid % encodings

(e.g. wWZV, %%1 instead of %2F)

def parse_nested_query(gs, d = nil)
params = KeySpaceConstrainedParams.new
(qgs || "').split(d ? /[#{d}] */n . DEFAULT_SEP).each do |p]|

k, v = p.split('="', 2).map { |s| unescape(s) }
normalize_params(params, k, V)

end
return params.to_params_hash

end

def normalize_params(params, name, v = nil)
name =~ %r(\ALN[NTT*CIANINTT+)NT™)

K =81 ["

ena

Y%or CANN (AN T+
72?2

helps transform [[1] to []

Idea

pre-generate matching values

create random values

passing the regular expressions

that should do it, right?

CONFIDENCE: The feeling you experience

def parse_nested_query(gs, d = nil)
params = KeySpaceConstrainedParams.new
(qgs || "').split(d ? /[#{d}] */n . DEFAULT_SEP).each do |p]|

k, v = p.split('="', 2).map { |s| unescape(s) }
normalize_params(params, Kk, V)

end
return params.to_params_hash

end

class KeySpaceConstrainedParams
def []=(key, value)
@size += key.size 1f key && !@params.key?(key)

raise RangeError, 'exceeded available parameter key space’
if @size > @limit

@params[key] = value
end

end

éh ._- k :’ *‘ ’“
iy o
- fQ | T "ﬁ.’ ‘ 1“** ‘ Ve

#’*.

)c, L(\r ..Nh " : ¥, =,
am a cleve I|tl|e..a

RO, L R | S ’

has ar Lo

.

what now? rails 1s safe?

FFFFFFF
FFFFFFF
FFFFFF
FFFUU
Uuuu
| UUUU
luuuu
“/ 4] UUUU
UUuUu-

remember:

hashes are used everywhere

SO If
application/x-www-form-urlencoded
doesn’'t work, how about

application/json

?

again, with the encoding...

fast-forward...

le demo

conclusion

patchwork i1s not helping

too many places

code bloat

vet another loophole will be found

example #2

java, enterprise™ edition

just apply the recipe (?)

String(bytell bytes)

public String(byte bytes[], int offset, int length,
Charset charset) {

char[] v = StringCoding.decode(charset, bytes, offset, length);

ﬁ—.—/

\ problem, byte[] ?

tough nut to crack

what now? java Is safe?

FFFFFFF
FFFFFFF
FFFFFF
FFFUU
Uuuu
| UUUU
luuuu
“/ 4] UUUU
UUuUu-

String(charll value)

public String(char value[]) A

int size = value.length;

this.offset = 0;

this.count = size;

this.value = Arrays.copyOf(value, size);

no decoding!

substitute bytell operations
with equivalent operations

on charll

le demo

disclosure

oracle (java): sep 11

cruby, jruby, rubinius: aug 30

oCERT advisory

CVEs were assigned

more.
http://emboss.github.com/blog

code:
https://github.com/emboss/schadcode

reactions

Java

ruby

cruby && Jruby && rubinius == fixed

=) true

http://www.ruby-lang.org/en/news/2012/11/09/ruby19-hashdos-cve-2012-5371/

http://iruby.org/2012/12/03/jruby-1-7-1.html

https://github.com/rubinius/rubinius/commit/a9a40fc6a1256bcf6382631b710430105c5dd868

they did a fantastic job

(like last year)

so what was the fix?

how can we fix this?

1 fix it

Dont use MurmurHash

CityHash?

“Inside Google, where CityHash
was developed starting in 2010,
we use variants of CityHash64()

mainly In hash tables such as
hash map<string, int>/”

https://code.google.com/p/cityhash

CityHash is weaker than MurmurHash

CityHash64(OY | L&:S;+[&HASH!, 16) = b553de6f34e878f
CityHash64(JkMR_ O\7](HASH!, 16) =b553de6f34e878f
CityHash64(<jil7g;s, (HASH!, 16) = b553de6f34e878f
CityHash64(e: yn"sg*a(HASH!, 16) = b553de6f34e878f
CityHash64(dt6PG8}?0z(HASH!, 16) = b553de6f34e878f
CityHash64(8c-lkD% Eo)HASHI!, 16) = b553de6f34e878f
CityHash64(TdIx>DnK-1*HASH!, 16) =b553de6f34e878f
CityHash64(iM:91=S"|e*HASH!, 16) =b553de6f34e878f
CityHash64(Z,r |5xMOI*HASH!, 16) =b553de6f34e878f
CityHash64(.QH~S!9P(p*HASH!, 16) =b553de6f34e878f
CityHash64({pF*"wkd[F+HASH!, 16) =b553de6f34e878f

CityHash64(i< @) oy+?,HASH!, 16) = b553de6f34e878f
CityHash64(BU9[85WWp/ HASH!, 16) = b553de6f34e878f
CityHash64(8{YDLn;d.2 HASH!, 16) = b553de6f34e878f

CityHash64(d+nkK&t?yr HASH!, 16) =b553de6f34e878f
CityHashoe4({A.#v5i]V{ HASH! 16) = b553de6f34e878f

Python's hash()?

S python -V
Python 2.7.3
S time -p python -R poc.py

04 candidate solutions

Verified solutions for
- Py HashSecret:

145ccY9aade’7d2453 275dafoe070ad41b99

945ccY9%9aade/dZ2453 a’bdafo070a41b99o
real 0.32

user 0.17
sys 0.02

Python 2.x and 3.x

» Randomization of hash() optional (-R)

* Instantaneous key recovery
* Multicollisions with TMTO

NET's Marvin32?

Something designed to be secure?

SipHash: a fast short-input PRF

New keyed hash to fix hash-flooding:
e Rigorous security requirements and analysis

e Speed competitive with that of weak hashes
e Can serve as MAC or PRF

Peer-reviewed research paper (A., Bernstein).
published at DIAC 2012, INDOCRYPT 2012

SipHash initialization

2560-bit state vO vl v2 v3
128-bit key kO k

vO = kO @ 0x736f6d6570736575
vl =kl D 0x646f72616e646f6d

v2 = kO & 0x6c7967656e657261
v3 =kl @ 0x7465646279746573

SipHash initialization

2560-bit state vO vl v2 v3
128-bit key kO k

vO = kO &@ “somepseu”
vl =kl & “dorandom”
v2 = kO & “lygenera”
v3 =kl @ “tedbytes”

SipHash compression

Message parsed as 64-bit words mO, m1, ..

v3i =m0
c Iterations of SipRound
vO &=m0

SipHash compression

Message parsed as 64-bit words mO, m1, ..

v3 O=m1l
c Iterations of SipRound
vO = m1l

SipHash compression

Message parsed as 64-bit words mO, m1, ..

v3 @=m2
c Iterations of SipRound
vO = m2

SipHash compression

Message parsed as 64-bit words mO, m1, ..

Etc.

SipRound

K 13

o

N
/

"< 17

-/«@:: 32

<K 16

B

L/

N

SipHash finalization

v2 6= 255
d iterations of SipRound
Returnvo @ vl @ v2 @ v3

SipHash-2-4 hashing 15 bytes

T

T

ko k1

a

punoyydig

puno}dig

punoydig

punodig

1™

N

1N

1/

puno}ydig

puno}dig

R

N

1N

L/

punoydig

puno}ydig

N
N

R

N

1
\/

1
N

R
N

T ff

o

ko k1

Family SipHash-c-d
Fast proposal: SipHash-2-4
Conservative proposal: SipHash-4-8

Weaker versions for cryptanalysis:
SipHash-1-0, SipHash-2-0, etc.
SipHash-1-1, SipHash-2-1, etc.

Etc.

Security claims

~ 2128 key recovery

~ 2192 state recovery

~ 2128 internal-collision forgery
~ 25 forgery with probab. 2564

Fast diffusion of differences, thanks
to optimized rotation counts

Round Differences Prob.
.. - P

1 1 (1
................................ DT - S - SE (1)
D < DT - 8. 8.....1...1.8...

2 13 (14)
S - T 9...8.....1.8.1.8... 8.1uuuv... 1.un..
..1.8..... 1..... 8..... 11a.1.1 8.1.1...8 1. 8.1.82....... 2..

3 42 (56)
a...1...8.1.8.11 8.12b413a2. .. .00 +... 92..8....21. 82..92..82..82..
99..82...21..211 e835621322.1.235 22...21.8.122613 621.c21.42..42.3

4 103 (159)

2.11..24ca3b5e.13 66778453..57bd22 4.1.c...c212641. 82..82..8.11.6..

a21182244a24e613 2ecld44fcb8.115dd c245d93226674453 e2.18..48a34a6.3
5 152 (311)

£225f3ce8cd.c6d8 ad44f51d8d.% 5616 2.445936acb3e25. a.4.d3.2.a5...51

6 52652 .cc868.c689 27Tbaa9d2d.e.fcdB8 Tccdb44684.b.8Bee 32246accBcbdcedsl 187 (498)
566 .3ab175df891e 2.ebd3.249fb3eabt 4ee9deBa.8bfct7d 2425523ecH2cf459

Combination of ADD and XOR ensures a high
nonlinearity (e.g. against cube attacks)

How fast Is SipHash-2-47

On an old AMD Athlon Il Neo (@1.6GHz)

Bytes 8 16 32 64
Cycles 123 134 158 204
(per byte) [(15.38) [(8.38) [(4.25) |(3.19)
MiBps 99 182 359 478

Long messages: 1.44 cycles/byte (1 GiBps)

cycles

lE'[:]E] T —— T 71+ *1® T "+ ’/1V/ " *™1v "1 1" 11— 711
SipHash A T

CityHash
1400 |- SpoocleyHash
MD5

L s S A 1 D et ey

1000

800

600

400

200

8 1o 24 32 40 48 56 64 72 80 88 90 104112120128
bytes

Proof of simplicity

June 20: paper published online

June 28: 18 third-party
Implementations

C (Floodyberry, BoBlet, Neves); C# (Haynes)

Cryptol (Lazar); Erlang, Javascript, PHP (Denis)
Go (Chestnykh); Haskell (Hanquez)

Java, Ruby (BoBlet); Lisp (Brown); Perl6 (Julin)

Who is using SipHash?

Take home message

Hash-flooding DoS works by enforcing worst
case In data structure operations through large
multicollisions in the hash function

Java and Rubies found vulnerable, due to their
use of MurmurHash v2 or v3

CityHash and Python’s hash are weak too..

SipHash offers both security and performance

SipHash paper, code, etc. available on
https://131002.net/siphash

Attacks paper coming soon..

